1 Introduction The primary purpose of the Guidelines for drinking-water quality is the protection of public health. The Guidelines provide the recommendations of the World Health Organization (WHO) for managing the risk from hazards that may compromise the safety of drinking-water. The recommendations should be considered in the context of managing the risk from other sources of exposure to these hazards, such as waste, air, food and consumer products. # 1.1 General considerations and principles Water is essential to sustain life, and a satisfactory (adequate, safe and accessible) supply must be available to all. Improving access to safe drinking-water can result in tangible benefits to health. Every effort should be made to achieve drinking-water that is as safe as practicable. Safe drinking-water, as defined by the Guidelines, does not represent any significant risk to health over a lifetime of consumption, including different sensitivities that may occur between life stages. Those at greatest risk of waterborne disease are infants and young children, people who are debilitated and the elderly, especially when living under unsanitary conditions. Those who are generally at risk of waterborne illness may need to take additional steps to protect themselves against exposure to waterborne pathogens, such as boiling their drinking-water. Safe drinking-water is required for all usual domestic purposes, Diseases related to contamination of drinking-water constitute a major burden on human health. Interventions to improve the quality of drinking-water provide significant benefits to health. including drinking, food preparation and personal hygiene. The Guidelines are applicable to packaged water and ice intended for human consumption. However, water of higher quality may be required for some special purposes, such as renal dialysis and cleaning of contact lenses, or for certain purposes in food production and pharmaceutical use. The Guidelines may not be suitable for the protection of aquatic life or for some industries. The Guidelines are intended to support the development and implementation of risk management strategies that will ensure the safety of drinking-water supplies through the control of hazardous constituents of water. These strategies may include national or regional standards developed from the scientific basis provided in the Guidelines. The Guidelines describe reasonable minimum requirements of safe practice to protect the health of consumers and derive numerical "guideline values" for constituents of water or indicators of water quality. When defining mandatory limits, it is preferable to consider the Guidelines in the context of local or national environmental, social, economic and cultural conditions. The Guidelines should also be part of an overall health protection strategy that includes sanitation and other strategies, such as managing food contamination. This strategy would also normally be incorporated into a legislative and regulatory framework that adapts the Guidelines to address local requirements and circumstances (see also section 2.6). The main reason for not promoting the adoption of international standards for drinking-water quality is the advantage provided by the use of a risk-benefit approach (qualitative or quantitative) in the establishment of national standards and regulations. Further, the Guidelines are best used to promote an integrated preventive management framework for safety applied from catchment to consumer. The Guidelines provide a scientific point of departure for national authorities to develop drinking-water regulations and standards appropriate for the national situation. In developing standards and regulations, care should be taken to ensure that scarce resources are not unnecessarily diverted to the development of standards and the monitoring of substances of relatively minor importance to public health. The approach followed in these Guidelines is intended to lead to national standards and regulations that can be readily implemented and enforced and are protective of public health. The nature and form of drinking-water standards may vary among countries and regions. There is no single approach that is universally applicable. It is essential in the development and implementation of standards that the current or planned legislation relating to water, health and local government is taken into account and that the capacity of regulators in the country is assessed. Approaches that may work in one country or region will not necessarily transfer to other countries or regions. It is essential that each country review its needs and capacities in developing a regulatory framework. The judgement of safety—or what is an acceptable level of risk in particular circumstances—is a matter in which society as a whole has a role to play. The final judgement as to whether the benefit resulting from the adoption of any of the Guidelines or guideline values as national or local standards justifies the cost is for each country to decide. Although the Guidelines describe a quality of water that is acceptable for lifelong consumption, the establishment of these Guidelines, including guideline values, should not be regarded as implying that the quality of drinking-water may be degraded to the recommended level. Indeed, a continuous effort should be made to maintain drinking-water quality at the highest possible level. An important concept in the allocation of resources to improving drinking-water safety is that of incremental improvement towards long-term health-based targets. Priorities set to remedy the most urgent problems (e.g. protection from pathogens; see section 1.1.2) may be linked to long-term targets of further water quality improvements (e.g. improvements in the acceptability of drinking-water in terms of its taste, odour and appearance; see section 1.1.6). An important concept in the allocation of resources to improving drinking-water safety is that of incremental improvement towards long-term water quality targets. ## 1.1.1 Framework for safe drinking-water The basic and essential requirements to ensure the safety of drinking-water are a "framework" for safe drinking-water, comprising health-based targets established by a competent health authority, adequate and properly managed systems (adequate infrastructure, proper monitoring and effective planning and management) and a system of independent surveillance. A holistic approach to the risk assessment and risk management of a drinking-water supply increases confidence in the safety of the drinking-water. This approach entails systematic assessment of risks throughout a drinking-water supply—from the catchment and its source water through to the consumer—and identification of the ways in which these risks can be managed, including methods to ensure that control measures are working effectively. It incorporates strategies to deal with day-to-day management of water quality, including upsets and failures. In this respect, climate change—in the form of increased and more severe periods of drought or more intense In Stockholm, in 1999, it was agreed that future guidelines for drinking-water, wastewater and recreational water should integrate assessment of risk, risk management options and exposure control elements within a single framework with embedded quality targets (see the supporting document *Water quality—Guidelines, standards and health*; Annex 1). Following this approach, the assessment of risk is not a goal in its own right, but rather a basis for decision-making. The framework for safe drinking-water and the recommended approach for regulations, policies and programmes are based on this overall framework, known as the Stockholm Framework (see chapter 2). rainfall events leading to flooding—can have an impact on both the quality and the quantity of water and will require planning and management to minimize adverse impacts on drinking-water supplies. Climate change also needs to be considered in the light of demographic change, such as the continuing growth of cities, which itself brings significant challenges for drinking-water supply. In support of the framework for safe drinking-water, the Guidelines provide a range of supporting information, including microbial aspects (chapters 7 and 11), chemical aspects (chapters 8 and 12), radiological aspects (chapter 9) and acceptability aspects (chapter 10). Figure 1.1 provides an overview of the interrelationships among the individual chapters of the Guidelines in ensuring drinking-water safety. The Guidelines are applicable to large metropolitan and small community piped drinking-water systems and to non-piped drinking-water systems in communities and in individual dwellings. The Guidelines are also applicable to a range of specific circumstances (chapter 6), including buildings, travellers and conveyances. ## 1.1.2 Microbial aspects Securing the microbial safety of drinking-water supplies is based on the use of multiple barriers, from catchment to consumer, to prevent the contamination of drinking-water or to reduce contamination to levels not injurious to health. Safety is increased if multiple barriers are in place, including protection of water resources, proper selection and operation of a series of treatment steps and management of distribution systems (piped or otherwise) to maintain and protect treated water quality. The preferred strategy is a management approach that places the primary emphasis on preventing or reducing the entry of pathogens into water sources and reducing reliance on treatment processes for removal of pathogens. In general terms, the greatest microbial risks are associated with ingestion of water that is contaminated with faeces from humans or animals (including birds). Faeces can be a source of pathogenic bacteria, viruses, protozoa and helminths. Faecally derived pathogens are the principal concerns in setting health-based targets for microbial safety. Microbial water quality often varies rapidly and over a wide range. Short-term peaks in pathogen concentration may increase disease risks considerably and may trigger outbreaks of water-borne disease. Furthermore, by the time microbial contamination is detected, many people may have been exposed. For these reasons, reliance cannot be placed solely on end-product testing, even when frequent, to determine the microbial safety of drinking-water. The potential health consequences of microbial contamination are such that its control must always be of paramount importance and must never be compromised. Particular attention should be directed to a water safety framework and implementing comprehensive water safety plans to consistently ensure drinking-water safety and thereby protect public health (see chapter 4). Failure to ensure drinking-water safety may expose the community to the risk of outbreaks of intestinal and other infectious diseases. Outbreaks of waterborne disease are particularly to be avoided because of their capacity to result in the simultaneous infection of a large number of persons and potentially a high proportion of the community. Figure 1.1 Interrelationships among the individual chapters of the *Guidelines for drinking-water quality* in ensuring drinking-water safety In addition to faecally borne pathogens, other microbial hazards, such as guinea worm (*Dracunculus medinensis*), toxic cyanobacteria and *Legionella*, may be of public health importance under specific circumstances. Although water can be a very significant source of infectious organisms, many of the diseases that may be waterborne may also be transmitted by other routes, including person-to-person contact, food intake and droplets and aerosols. Depending on the circumstances and in the absence of waterborne outbreaks, these routes may be more important than waterborne transmission. Microbial aspects of water quality are considered in more detail in chapter 7, with fact sheets on specific microorganisms provided in chapter 11. ## 1.1.3 Disinfection Disinfection is of unquestionable importance in the supply of safe drinking-water. The destruction of pathogenic microorganisms is essential and very commonly involves the use of reactive chemical agents such as chlorine. Disinfection is an effective barrier to many pathogens (especially bacteria) during drinking-water treatment and should be used for surface waters and for groundwater subject to faecal contamination. Residual disinfection is used to provide a partial safeguard against low-level contamination and growth within the distribution system. Chemical disinfection of a drinking-water supply that is faecally contaminated will reduce the overall risk of disease but may not necessarily render the supply safe. For example, chlorine disinfection of drinking-water has limitations against the protozoan pathogens—in particular Cryptosporidium—and some viruses. Disinfection efficacy may also be unsatisfactory against pathogens within flocs or particles, which protect them from the action of disinfectants. High levels of turbidity can protect microorganisms from the effects of disinfection, stimulate the growth of bacteria and give rise to a significant chlorine demand. It is essential that an overall management strategy is implemented in which multiple barriers, including source water protection and appropriate treatment processes, as well as protection during storage and distribution, are used in conjunction with disinfection to prevent or remove microbial contamination. The use of chemical disinfectants in water treatment usually results in the formation of chemical by-products. However, the risks to health from these by-products are extremely small in comparison with the risks associated with inadequate disinfection, and it is important that disinfection efficacy not be compromised in attempting to control such by-products. Disinfection should not be compromised in attempting to control disinfection byproducts. Some disinfectants, such as chlorine, can be easily monitored and controlled as a drinking-water disinfectant, and frequent monitoring is recommended wherever chlorination is practised. Disinfection of drinking-water is considered in more detail in chapter 7 and Annex 5, with fact sheets on specific disinfectants and disinfection by-products provided in chapter 12. ## 1.1.4 Chemical aspects The health concerns associated with chemical constituents of drinking-water differ from those associated with microbial contamination and arise primarily from the ability of chemical constituents to cause adverse health effects after prolonged periods of exposure. There are few chemical constituents of water that can lead to health problems re- The great majority of evident water-related health problems are the result of microbial (bacterial, viral, protozoan or other biological) contamination. Nevertheless, an appreciable number of serious health concerns may occur as a result of the chemical contamination of drinking-water. sulting from a single exposure, except through massive accidental contamination of a drinking-water supply. Moreover, experience shows that in many, but not all, such incidents, the water becomes undrinkable owing to unacceptable taste, odour and appearance. In situations where short-term exposure is not likely to lead to health impairment, it is often most effective to concentrate the available resources for remedial action on finding and eliminating the source of contamination, rather than on installing expensive drinking-water treatment for the removal of the chemical constituent. There are many chemicals that may occur in drinking-water; however, only a few are of immediate health concern in any given circumstance. The priority given to both monitoring and remedial action for chemical contaminants in drinking-water should be managed to ensure that scarce resources are not unnecessarily directed towards those of little or no health concern (see the supporting document *Chemical safety of drinking-water*; Annex 1). There are few chemicals for which the contribution from drinking-water to overall intake is an important factor in preventing disease. One example is the effect of fluoride in drinking-water in protecting against dental caries. The Guidelines do not attempt to define minimum desirable concentrations for chemicals in drinking-water. Guideline values are derived for many chemical constituents of drinking-water. A guideline value normally represents the concentration of a constituent that does not result in any significant risk to health over a lifetime of consumption. A number of provisional guideline values have been established based on the practical level of treatment performance or analytical achievability. In these cases, the guideline value is higher than the calculated health-based value. The chemical aspects of drinking-water quality are considered in more detail in chapter 8, with fact sheets on specific chemical contaminants provided in chapter 12. ## 1.1.5 Radiological aspects The health risks associated with the presence of naturally occurring radionuclides in drinking-water should also be taken into consideration, although the contribution of drinking-water to total exposure to radionuclides is very small under normal circumstances. Formal guideline values are not set for individual radionuclides in drinking-water. Rather, the approach used is based on screening drinking-water for gross alpha and gross beta radiation activity. Although finding levels of activity above screening values does not indicate any immediate risk to health, it should trigger further investigation to determine the radionuclides responsible and the possible risks, taking local circumstances into account. The guidance levels for radionuclides recommended in these Guidelines do not apply to drinking-water supplies contaminated during emergencies arising from accidental releases of radioactive substances to the environment. Radiological aspects of drinking-water quality are considered in more detail in chapter 9. ## 1.1.6 Acceptability aspects: taste, odour and appearance Water should be free of tastes and odours that would be objectionable to the majority of consumers. In assessing the quality of drinking-water, consumers rely principally upon their senses. Microbial, chemical and physical constituents of water may affect the appearance, odour or taste of the water, and the consumer will evaluate the quality and acceptability of the water on the basis of these criteria. Although these constituents may have no direct health effects, water that is highly turbid, is highly coloured or has an objectionable taste or odour may be regarded by consumers as unsafe and rejected. In extreme cases, consumers may avoid aesthetically unacceptable but otherwise safe drinking-water in favour of more pleasant but potentially unsafe sources. It is therefore wise to be aware of consumer perceptions and to take into account both health-related guideline values and aesthetic criteria when assessing drinking-water supplies and developing regulations and standards. Changes in the normal appearance, taste or odour of a drinking-water supply may signal changes in the quality of the raw water source or deficiencies in the treatment process and should be investigated. Acceptability aspects of drinking-water quality are considered in more detail in chapter 10. # 1.2 Roles and responsibilities in drinking-water safety management Preventive management is the preferred approach to ensuring drinking-water safety and should take account of the characteristics of the drinking-water supply from catchment and source to its use by consumers. As many aspects of drinking-water quality management are often outside the direct responsibility of the water supplier, it is A preventive integrated management approach with collaboration from all relevant agencies is the preferred approach to ensuring drinking-water safety essential that a collaborative multiagency approach be adopted to ensure that agencies with responsibility for specific areas within the water cycle are involved in the management of water quality. One example is where catchments and source waters are beyond the drinking-water supplier's jurisdiction. Consultation with other authorities will generally be necessary for other elements of drinking-water quality management, such as monitoring and reporting requirements, emergency response plans and communication strategies. Major stakeholders that could affect or be affected by decisions or activities of the drinking-water supplier should be encouraged to coordinate their planning and management activities where appropriate. These could include, for example, health and resource management agencies, consumers, industry and plumbers. Appropriate mechanisms and documentation should be established for stakeholder commitment and involvement. ## 1.2.1 Surveillance and quality control In order to protect public health, a dual-role approach, differentiating the roles and responsibilities of service providers from those of an authority responsible for independent oversight protective of public health ("drinking-water supply surveillance"), has proven to be effective. Organizational arrangements for the maintenance and improvement of drinking- water supply services should therefore take into account the vital and complementary roles of the agency respon- Drinking-water suppliers are responsible at all times for the quality and safety of the water that they produce sible for surveillance and of the water supplier. The two functions of surveillance and quality control are best performed by separate and independent entities because of the conflict of interest that arises when the two are combined. In this: - national agencies provide a framework of targets, standards and legislation to enable and require suppliers to meet defined obligations; - agencies involved in supplying water for consumption by any means should be required to ensure and verify that the systems they administer are capable of delivering safe water and that they routinely achieve this; - a surveillance agency is responsible for independent (external) surveillance through periodic audit of all aspects of safety and/or verification testing. In practice, there may not always be a clear division of responsibilities between the surveillance and drinking-water supply agencies. In some cases, the range of professional, governmental, nongovernmental and private institutions may be wider and more complex than that discussed above. Whatever the existing framework, it is important that clear strategies and structures be developed for implementing water safety plans, quality control and surveillance, collating and summarizing data, reporting and disseminating the findings and taking remedial action. Clear lines of accountability and communication are essential. Surveillance is an investigative activity undertaken to identify and evaluate potential health risks associated with drinkingwater. Surveillance contributes to the protection of public health by promoting improvement of the quality, quantity, accessibility, coverage (i.e. populations with reliable access), affordability and continuity of drinking-water supplies (termed "service indicators"). The surveillance authority must have the authority to determine whether a water supplier is fulfilling its obligations. Surveillance of drinking-water quality can be defined as "the continuous and vigilant public health assessment and review of the safety and acceptability of drinking-water supplies" (WHO, 1976). In most countries, the agency responsible for the surveillance of drinking-water supply services is the ministry of health (or public health) and its regional or departmental offices. In some countries, it may be an environmental protection agency; in others, the environmental health departments of local government may have some responsibility. Surveillance requires a systematic programme of surveys, which may include auditing, analysis, sanitary inspection and institutional and community aspects. It should cover the whole of the drinking-water system, including sources and activities in the catchment, transmission infrastructure, treatment plants, storage reservoirs and distribution systems (whether piped or unpiped). Ensuring timely action to prevent problems and ensure the correction of faults should be one aim of a surveillance programme. There may at times be a need for penalties to encourage and ensure compliance. The surveillance agency must therefore be supported by strong and enforceable legislation. However, it is important that the agency develops a positive and supportive relationship with suppliers, with the application of penalties used as a last resort. The surveillance agency should be empowered by law to compel water suppliers to recommend the boiling of water or other measures when microbial contamination that could threaten public health is detected. ## 1.2.2 Public health authorities In order to effectively support the protection of public health, a national entity with responsibility for public health will normally act in four areas: - 1) *surveillance of health status and trends*, including outbreak detection and investigation, generally directly but in some instances through a decentralized body; - directly establishing drinking-water *norms and standards*. National public health authorities often have the primary responsibility for setting norms on drinking-water supply, which may include the setting of water quality targets, performance and safety targets and directly specified requirements (e.g. treatment). Normative activity is not restricted to water quality but also includes, for example, regulation and approval of materials and chemicals used in the production and distribution of drinking-water (see section 8.5.4) and establishing minimum standards in areas such as domestic plumbing (see section 1.2.10). Nor is it a static activity, because as changes occur in drinking-water supply practice, in technologies and in materials available (e.g. in plumbing materials and treatment processes), so health priorities and responses to them will also change; - 3) representing health concerns in *wider policy development*, especially health policy and integrated water resource management (see section 1.2.4). Health concerns will often suggest a supportive role towards resource allocation to those concerned with drinking-water supply extension and improvement, will often involve lobbying for the primary requirement to satisfy drinking-water needs above other priorities and may imply involvement in conflict resolution; - 4) direct action, generally through subsidiary bodies (e.g. regional and local environmental health administrations) or by providing guidance to other local entities (e.g. local government) in surveillance of drinking-water supplies. These roles vary widely according to national and local structures and responsibilities and frequently include a supportive role to community suppliers, where local authorities often intervene directly. Public health surveillance (i.e. surveillance of health status and trends) contributes to verifying drinking-water safety. It takes into consideration disease in the entire population, which may be exposed to pathogenic microorganisms from a range of sources, not only drinking-water. National public health authorities may also undertake or direct research to evaluate the role of water as a risk factor in disease, through case—control, cohort or intervention studies, for example. Public health surveillance teams typically operate at national, regional and local levels, as well as in cities and rural health centres. Routine surveillance includes: - ongoing monitoring of reportable diseases, many of which can be caused by waterborne pathogens; - outbreak detection; - long-term trend analysis; - geographic and demographic analysis; - feedback to water authorities. Public health surveillance can be enhanced in a variety of ways to identify possible waterborne outbreaks in response to suspicion about unusual disease incidence or following deterioration of water quality. Epidemiological investigations include: - outbreak investigations; - intervention studies to evaluate intervention options; - case-control or cohort studies to evaluate the role of water as a risk factor in disease. However, public health surveillance cannot be relied upon to provide information in a timely manner to enable short-term operational response to control waterborne disease. Limitations include: - outbreaks of non-reportable disease; - time delay between exposure and illness; - time delay between illness and reporting; - low level of reporting; - difficulties in identifying causative pathogens and sources. The public health authority operates reactively, as well as proactively, against the background of overall public health policy and in interaction with all stakeholders. In accounting for public health context, priority will normally be afforded to disadvantaged groups. This will generally entail balancing drinking-water safety management and improvement with the need to ensure access to reliable supplies of safe drinking-water in adequate quantities. In order to develop an understanding of the national drinking-water situation, the national public health authority should periodically produce reports outlining the state of national water quality and highlighting public health concerns and priorities in the context of overall public health priorities. This implies the need for effective exchange of information between local, regional and national agencies. National health authorities should lead or participate in the formulation and implementation of policy to ensure access to some form of reliable, safe drinking-water supply. Where this has not been achieved, appropriate tools and education should be made available to implement individual or household-level treatment and safe storage. ## 1.2.3 Local authorities Local environmental health authorities often play an important role in managing water resources and drinking-water supplies. This may include catchment inspection and authorization of activities in the catchment that may have an impact on source water quality. It can also include verifying and auditing (surveillance) of the management of formal drinking-water systems. Local environmental health authorities will also give specific guidance to communities or individuals in designing and implementing community and household drinking-water systems and correcting deficiencies, and they may also be responsible for surveillance of community and household #### **GUIDELINES FOR DRINKING-WATER OUALITY** drinking-water supplies. They have an important role to play in educating consumers where household water treatment is necessary. Management of household and small community drinking-water supplies generally requires education programmes about drinking-water supply and water quality. Such programmes should normally include: - water hygiene awareness raising; - basic technical training and technology transfer in drinking-water supply and management; - consideration of and approaches to overcoming sociocultural barriers to acceptance of water quality interventions; - motivation, mobilization and social marketing activities; - a system of continued support, follow-up and dissemination of the water quality programme to achieve and maintain sustainability. These programmes can be administered at the community level by local health authorities or other entities, such as nongovernmental organizations and the private sector. If the programme arises from other entities, the involvement of the local health authority in the development and implementation of the water quality education and training programme is strongly encouraged. Approaches to participatory hygiene and sanitation education and training programmes are described in other WHO documents (see Simpson-Hébert, Sawyer & Clarke, 1996; Sawyer, Simpson-Hébert & Wood, 1998; Brikké, 2000). ## 1.2.4 Water resource management Water resource management is an integral aspect of the preventive management of drinking-water quality. Prevention of microbial and chemical contamination of source water is the first barrier against drinking-water contamination of public health concern. Water resource management and potentially polluting human activity in the catchment will influence water quality downstream and in aquifers. This will have an impact on the treatment steps required to ensure safe water, and preventive action may be preferable to upgrading treatment. The influence of land use on water quality should be assessed as part of water resource management. This assessment is not normally undertaken by health authorities or drinking-water supply agencies alone and should take into consideration: - land cover modification; - extraction activities: - construction/modification of waterways; - application of fertilizers, herbicides, pesticides and other chemicals; - livestock density and application of manure; - road construction, maintenance and use: - various forms of recreation; - urban or rural residential development, with particular attention to excreta disposal, sanitation, landfill and waste disposal; other potentially polluting human activities, such as industry, mining and military sites Water resource management may be the responsibility of catchment management agencies and/or other entities controlling or affecting water resources, such as industrial, agricultural, navigation and flood control entities. The extent to which the responsibilities of health or drinking-water supply agencies include water resource management varies greatly between countries and communities. Regardless of government structures and sector responsibilities, it is important that health authorities liaise and collaborate with sectors managing the water resource and regulating land use in the catchment. Establishing close collaboration between the public health authority, water supplier and resource management agency assists recognition of the health hazards potentially occurring in the system. It is also important for ensuring that the protection of drinking-water resources is considered in decisions for land use or regulations to control contamination of water resources. Depending on the setting, this may include involvement of further sectors, such as agriculture, traffic, tourism or urban development. To ensure the adequate protection of drinking-water sources, national authorities will normally interact with other sectors in formulating national policy for integrated water resource management. Regional and local structures for implementing the policy will be set up, and national authorities will guide regional and local authorities by providing tools. Regional environmental or public health authorities have an important task in participating in the preparation of integrated water resource management plans to ensure the best available drinking-water source quality. For further information, see the supporting document *Protecting groundwater for health* and *Protecting surface water for health* (see Annex 1). ## 1.2.5 Drinking-water supply agencies Drinking-water supplies vary from very large urban systems servicing large populations with tens of millions of people to small community systems providing water to very small populations. In most countries, they include community sources as well as piped means of supply. Drinking-water supply agencies are responsible for quality assurance and quality control (see section 1.2.1). Their key responsibilities are to prepare and implement water safety plans (for more information, see chapter 4). In many cases, the water supplier is not responsible for the management of the catchment feeding the sources of its supplies. The roles of the water supplier with respect to catchments are to participate in interagency water resource management activities, to understand the risks arising from potentially contaminating activities and incidents and to use this information in assessing risks to the drinking-water supply and developing and applying appropriate management. Although drinking-water suppliers may not undertake catchment surveys and pollution risk assessment alone, their role is to recognize the need for them and to initiate multiagency collaboration—for example, with health and environmental authorities. Experience has shown that an association of stakeholders in drinking-water supply (e.g. operators, managers and specialist groups such as small suppliers, scientists, sociologists, legislators and politicians) can provide a valuable non-threatening forum for the interchange of ideas. For further information, see the supporting document *Water safety plans* (see Annex 1). # 1.2.6 Community management Community-managed drinking-water systems, with both piped and non-piped distribution, are common worldwide in both developed and developing countries. The precise definition of a community drinking-water system will vary. Although a definition based on population size or the type of supply may be appropriate under many conditions, approaches to administration and management provide a distinction between the drinking-water systems of small communities and those of larger towns and cities. This includes the increased reliance on often untrained and sometimes unpaid community members in the administration and operation of community drinking-water systems. Drinking-water systems in periurban areas—the communities surrounding major towns and cities—in developing countries may also have the characteristics of community systems. Effective and sustainable programmes for the management of community drinking-water quality require the active support and involvement of local communities. These communities should be involved at all stages of such programmes, including initial surveys; decisions on siting of wells, siting of intakes or establishing protection zones; monitoring and surveillance of drinking-water supplies; reporting faults, carrying out maintenance and taking remedial action; and supportive actions, including sanitation and hygiene practices. A community may already be highly organized and taking action on health or drinking-water supply issues. Alternatively, it may lack a well-developed drinking-water system; some sectors of the community, such as women, may be poorly represented; and there may be disagreements or factional conflicts. In these situations, achieving community participation will take more time and effort to bring people together, resolve differences, agree on common aims and take action. Visits, possibly over several years, will often be needed to provide support and encouragement and to ensure that the structures created for safe drinking-water supply continue to operate. This may involve setting up hygiene and health educational programmes to ensure that the community: - is aware of the importance of drinking-water quality and its relationship with health and of the need for safe drinking-water in sufficient quantities for domestic use for drinking, cooking and hygiene; - recognizes the importance of surveillance and the need for a community response; - understands and is prepared to play its role in the surveillance process; - has the necessary skills to perform that role; - is aware of requirements for the protection of drinking-water supplies from pollution. For further information, see the 1997 volume entitled *Surveillance and control of community supplies* (WHO, 1997); the supporting document *Water safety plans* (Annex 1); Simpson-Hébert, Sawyer & Clarke (1996); Sawyer, Simpson-Hébert & Wood (1998); and Brikké (2000). #### 1.2.7 Water vendors Vendors selling water to households or at collection points are common in many parts of the world where scarcity of water or faults in or lack of infrastructure limits access to suitable quantities of drinking-water. Water vendors use a range of modes of transport to carry drinking-water for sale directly to the consumer, including tanker trucks and wheelbarrows or trolleys. In the context of these Guidelines, water vending does not include bottled or packaged water (which is considered in section 6.14) or water sold through vending machines. There are a number of health concerns associated with water supplied to consumers by water vendors. These include access to adequate volumes and concern regarding inadequate treatment or transport in inappropriate containers, which can result in contamination. More detailed information on treatment of vended water, undertaking a risk assessment of vended water supplies, operational monitoring of control measures, management plans and independent surveillance is included in section 6.3. #### 1.2.8 Individual consumers Everyone consumes water from one source or another, and consumers often play important roles in the collection, treatment and storage of water. Consumer actions may help to ensure the safety of the water they consume and may also contribute to improvement or contamination of the water consumed by others. Consumers have the responsibility for ensuring that their actions do not have an adverse impact on water quality. Installation and maintenance of household plumbing systems should be undertaken preferably by qualified and authorized plumbers (see section 1.2.10) or other persons with appropriate expertise to ensure that cross-connections or backflow events do not result in contamination of local water supplies. In most countries, there are populations whose water is derived from household sources, such as private wells and rainwater. In households using non-piped water supplies, appropriate efforts are needed to ensure safe collection, storage and perhaps treatment of their drinking-water. In some circumstances, households and individuals may wish to treat water in the home to increase their confidence in its safety. This would be relevant where community supplies are absent or where community supplies are known to be contaminated or causing waterborne disease (see chapter 7). Public health surveillance or other local authorities may provide guidance to support households and individual consumers in ensuring the safety of their drinking-water. Such guidance is best provided in the context of a community education and training programme. ## 1.2.9 Certification agencies Certification is used to verify that devices and materials used in the drinking-water supply meet a given level of quality and safety. Certification is a process in which an independent organization validates the claims of the manufacturers against a formal standard or criterion or provides an independent assessment of possible risks of contamination from a material or process. The certification agency may be responsible for seeking data from manufacturers, generating test results, conducting inspections and audits and possibly making recommendations on product performance. Certification has been applied to technologies used at household and community levels, such as hand pumps; materials used by water supplies, such as treatment chemicals; and devices used in the household for collection, treatment and storage. Certification of products or processes involved in the collection, treatment, storage and distribution of water can be overseen by government agencies or private organizations. Certification procedures will depend on the standards against which the products are certified, certification criteria and the party that performs the certification. Certification can also be applied to the implementation of water safety plans. This can take the form of an independent organization or party undertaking audits to verify that plans have been properly designed, are being implemented correctly and are effective. National, local government or private (third-party auditing) certification programmes have a number of possible objectives: - certification of products to ensure that their use does not threaten the safety of the user or the general public, such as by causing contamination of drinkingwater with toxic substances, substances that could affect consumer acceptability or substances that support the growth of microorganisms; - product testing, to avoid retesting at local levels or prior to each procurement; - ensuring uniform quality and condition of products; - certification and accreditation of analytical and other testing laboratories; - control of materials and chemicals used for the treatment of drinking-water, including the performance of devices for household use; - ensuring that water safety plans are effective. An important step in any certification procedure is the establishment of standards, which must form the basis of assessment of the products. These standards should also—as far as possible—contain the criteria for approval. In procedures for certification on technical aspects, these standards are generally developed in cooperation with the manufacturers, the certifying agency and the consumers. The national public health authorities should have responsibility for developing the parts of the approval process or criteria relating directly to public health. For further information on the control of materials and chemicals used for the treatment of drinking-water, see section 8.5.4. #### 1.2.10 Plumbing Significant adverse health effects have been associated with inadequate plumbing systems within public and private buildings arising from poor design, incorrect installation, alterations and inadequate maintenance. Numerous factors influence the quality of water within a building's piped distribution system and may result in microbial or chemical contamination of drinking-water. Outbreaks of gastrointestinal disease can occur through faecal contamination of drinking-water within buildings arising from deficiencies in roof storage tanks and cross-connections with wastewater pipes, for example. Poorly designed plumbing systems can cause stagnation of water and provide a suitable environment for the proliferation of *Legionella*. Plumbing materials, pipes, fittings and coatings can result in elevated heavy metal (e.g. lead) concentrations in drinking-water, and inappropriate materials can be conducive to bacterial growth. Potential adverse health effects may not be confined to the individual building. Exposure of other consumers to contaminants is possible through contamination of the local public distribution system, beyond the particular building, through cross-contamination of drinking-water and backflow. The delivery of water that complies with relevant standards within buildings generally relies on a plumbing system that is not directly managed by the water supplier. Reliance is therefore placed on proper installation of plumbing and, for larger buildings, on building-specific water safety plans (see section 6.9). To ensure the safety of drinking-water supplies within the building system, plumbing practices must prevent the introduction of hazards to health. This can be achieved by ensuring that: - pipes carrying either water or wastes are watertight, durable, of smooth and unobstructed interior and protected against anticipated stresses; - cross-connections between the drinking-water supply and the wastewater removal systems do not occur; - roof storage systems are intact and not subject to intrusion of microbial or chemical contaminants; - hot and cold water systems are designed to minimize the proliferation of *Legionella* (see also sections 6.10 and 11.1); - appropriate protection is in place to prevent backflow; - the system design of multistorey buildings minimizes pressure fluctuations; - waste is discharged without contaminating drinking-water; - plumbing systems function efficiently. It is important that plumbers are appropriately qualified, have the competence to undertake necessary servicing of plumbing systems to ensure compliance with local regulations and use only materials approved as safe for use with drinkingwater. Design of the plumbing systems of new buildings should normally be approved prior to construction and be inspected by an appropriate regulatory body during construction and prior to commissioning of the buildings. For more information on the essential roles of proper drinking-water system and waste system plumbing in public health, see the supporting document *Health aspects of plumbing* (Annex 1). ## 1.3 Supporting resources to the Guidelines #### 1.3.1 Published documents These Guidelines are accompanied by separate texts that provide background information substantiating the derivation of the Guidelines and providing guidance on good practice towards their effective implementation. These are available as published texts, for download from the WHO web site and on CD-ROM. Reference details are provided in Annex 1. ## 1.3.2 Capacity-building networks To promote the rapid dissemination of information, improve knowledge exchange, translate evidence and advice into public health policy and practice and facilitate implementation of these Guidelines, a number of international networks have been established. These international networks bring together drinking-water quality specialists, drinking-water supply managers, health regulators, community managers and other stakeholders. The focus areas for these networks are water safety planning for larger systems, including effective operations and maintenance, safe management of small community water supplies, household water treatment and safe storage and optimizing drinking-water regulations to protect public health. Further information on these networks is available at http://www.who.int/water_sanitation_health/water-quality/en/.