
 

WHO/FWC/WSH/16.53 

 

 

 

 

 

 

 

 

 

 

 

Lead in Drinking-water 
 

 
Background document for development of 

WHO Guidelines for Drinking-water Quality 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

This document is a revision of document reference number WHO/SDE/WSH/03.04/09/Rev/1, 

published in 2011. Revisions are indicated with a vertical line in the left margin. 

 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lead in Drinking-water 

Background document for development of WHO Guidelines for Drinking-water 

Quality 

 

 World Health Organization 2016 

 

All rights reserved. Publications of the World Health Organization can be obtained 

from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, 

Switzerland (tel.: +41 22791 3264; fax: +41 22 791 4857; e-mail: 

bookorders@who.int). Requests for permission to reproduce or translate WHO 

publications—whether for sale or for non-commercial distribution—should be 

addressed to WHO Press at the above address (fax: +41 22 791 4806; e-mail: 

permissions@who.int). 

 

The designations employed and the presentation of the material in this publication do 

not imply the expression of any opinion whatsoever on the part of the World Health 

Organization concerning the legal status of any country, territory, city or area or of its 

authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines 

on maps represent approximate border lines for which there may not yet be full 

agreement.  

 

The mention of specific companies or of certain manufacturers’ products does not 

imply that they are endorsed or recommended by the World Health Organization in 

preference to others of a similar nature that are not mentioned. Errors and omissions 

excepted, the names of proprietary products are distinguished by initial capital letters. 

 

All reasonable precautions have been taken by the World Health Organization to 

verify the information contained in this publication. However, the published material 

is being distributed without warranty of any kind, either expressed or implied. The 

responsibility for the interpretation and use of the material lies with the reader. In no 

event shall the World Health Organization be liable for damages arising from its use. 

 

The named authors alone are responsible for the views expressed in this publication. 
 



iii 

 

Preface 

 

Access to safe drinking-water is essential to health, a basic human right and a 

component of effective policy for health protection. A major World Health 

Organization (WHO) function to support access to safe drinking-water is the 

responsibility “to propose ... regulations, and to make recommendations with respect 

to international health matters ....”, including those related to drinking-water safety 

and management.  

 

The first WHO document dealing specifically with public drinking-water quality was 

published in 1958 as International Standards for Drinking-water. It was subsequently 

revised in 1963 and in 1971 under the same title. In 1984–1985, the first edition of the 

WHO Guidelines for Drinking-water Quality (GDWQ) was published in three 

volumes: Volume 1, Recommendations; Volume 2, Health criteria and other 

supporting information; and Volume 3, Surveillance and control of community 

supplies. Second editions of these volumes were published in 1993, 1996 and 1997, 

respectively. Addenda to Volumes 1 and 2 of the second edition were published in 

1998, addressing selected chemicals. An addendum on microbiological aspects 

reviewing selected microorganisms was published in 2002.  The third edition of the 

GDWQ was published in 2004, the first addendum to the third edition was published 

in 2006 and the second addendum to the third edition was published in 2008. The 

fourth edition was published in 2011, and the first addendum to the fourth edition was 

published in 2016. 

 

The GDWQ are subject to a rolling revision process. Through this process, microbial, 

chemical and radiological aspects of drinking-water are subject to periodic review, 

and documentation related to aspects of protection and control of public drinking-

water quality is accordingly prepared and updated. 

 

Since the first edition of the GDWQ, WHO has published information on health 

criteria and other supporting information to the GDWQ, describing the approaches 

used in deriving guideline values and presenting critical reviews and evaluations of 

the effects on human health of the substances or contaminants of potential health 

concern in drinking-water. In the first and second editions, these constituted Volume 2 

of the GDWQ. Since publication of the third edition, they comprise a series of free-

standing monographs, including this one. 

 

For each chemical contaminant or substance considered, a background document 

evaluating the risks for human health from exposure to the particular chemical in 

drinking-water was prepared. Institutions from Canada, Japan, the United Kingdom 

and the United States of America (USA) prepared the documents for the fourth 

edition. 

 

During the preparation of this background document, careful consideration was given 

to information available in previous risk assessments carried out by the International 

Programme on Chemical Safety, in its Environmental Health Criteria monographs and 

Concise International Chemical Assessment Documents, the International Agency for 

Research on Cancer, the Joint FAO/WHO Meeting on Pesticide Residues and the 
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Joint FAO/WHO Expert Committee on Food Additives (which evaluates 

contaminants such as lead, cadmium, nitrate and nitrite, in addition to food additives).  

 

Further up-to-date information on the GDWQ and the process of their development is 

available on the WHO Internet site and in the current edition of the GDWQ. 
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1. GENERAL DESCRIPTION 

 

1.1 Identity 

 

Lead is the commonest of the heavy elements, accounting for 13 mg/kg of Earth’s 

crust. Several stable isotopes of lead exist in nature, including, in order of abundance, 
208Pb, 206Pb, 207Pb and 204Pb.  

 

1.2 Physicochemical properties 

 

Property Value 

Physical state Soft metal 

Melting point 327 °C  

 

1.3 Major uses 

 

Lead is used in the production of lead acid batteries, solder, alloys, cable sheathing, 

pigments, rust inhibitors, ammunition, glazes and plastic stabilizers (1). Tetraethyl 

and tetramethyl lead are important because of their extensive use as antiknock 

compounds in petrol, but in many countries their use for this purpose has been almost 

completely phased out. Although lead is occasionally found in source water, the most 

important source of lead from a drinking-water perspective is lead pipes in older 

systems with lead service connections (between the water mains and the building) and 

lead plumbing. Lead solder and lead in alloy fittings can also be important sources of 

lead in drinking-water (2). 

 

2. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE 

 

2.1 Air 

 

Concentrations of lead in air depend on a number of factors, including proximity to 

roads and point sources. Annual geometric mean concentrations measured at more 

than 100 stations across Canada declined steadily from 0.74 µg/m3 in 1973 to 0.10 

µg/m3 in 1989 (4,5), reflecting the decrease in the use of lead additives in petrol. 

Typical quarterly averages for urban areas without significant point sources in the 

United States of America (USA) in 1987 were in the range 0.1–0.3 µg/m3; in the 

vicinity of major point sources, such as lead smelters and battery plants, air levels 

typically ranged from 0.3 to 4.0 µg/m3 (6). Levels at three locations in Barcelona 

(Spain) during the winter of 1985 ranged from 0.9 to 2.5 µg/m3 (7), presumably 

reflecting heavy use of leaded petrol. The overall means in London and in a rural area 

of Suffolk in 1984–85 were 0.50 µg/m3 (range 0.23–0.82) and 0.10 µg/m3 (range 

0.05–0.17), respectively (8). Levels of lead in 1983 in the Norwegian Arctic, an area 

remote from urban influences, varied between 0.1–0.3 and 0.3–9.0 ng/m3 (9).  

 

If an average concentration in air of 0.2 µg/m3 is assumed, the intake of lead from air 

can be calculated to range from 0.5 µg/day for an infant to 4 µg/day for an adult. 
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2.2 Water 

 

With the decline in atmospheric emissions of lead since the introduction of legislation 

restricting its use in fuels, water has assumed new importance as the largest 

controllable source of lead exposure in the USA (10). 

 

Lead is present in tap water to some extent as a result of its dissolution from natural 

sources, but primarily from household plumbing systems in which the pipes, solder, 

fittings (including alloy fittings with high lead content) or service connections to 

homes contain lead. Polyvinyl chloride (PVC) pipes also contain lead compounds that 

can be leached from them and result in high lead concentrations in drinking-water. 

The amount of lead dissolved from the plumbing system depends on several factors, 

including the presence of chloride and dissolved oxygen, pH, temperature, alkalinity, 

scale in pipes and standing time of the water, with soft, acidic water being the most 

plumbosolvent (11,12). Different types of lead corrosion products (scales) form, 

depending on water chemistry. The divalent lead scales cerussite, hydrocerussite and 

lead hydroxide generally determine the lead levels at the tap because of their 

solubility (125–127). However, the formation of insoluble tetravalent lead scales 

(scrutinyite or plattnerite) results from a low oxidant demand bulk water and the 

presence of free chlorine (128, 129). A disinfectant change from free chlorine 

(especially at higher doses) to chloramination can result in a lower oxidation-

reduction potential (ORP) in the water (130, 131). This change in ORP results in the 

conversion of stable tetravalent to soluble divalent lead scales and increased levels of 

lead at the tap (132, 133). Accordingly, significant changes in the water quality of a 

supply (e.g. changes in treatment or changes of source) can result in changes in 

plumbosolvency or solubilization of lead deposits, or both. 

 

Although lead can be leached from lead piping indefinitely, it appears that the 

leaching of lead from soldered joints and brass taps decreases with time (10). 

Soldered connections in recently built homes fitted with copper piping can release 

enough lead (210–390 µg/l) to cause intoxication in children (13). The level of lead in 

drinking-water may be reduced by corrosion control measures such as the addition of 

lime and the adjustment of the pH in the distribution system from <7 to 8–9 (14,15). 

Lead can also be released from particulate lead carbonate deposits on lead pipe and 

from iron sediment from old galvanized plumbing that has accumulated lead from 

sources such as plumbing and service connections, even when the water is no longer 

plumbosolvent. 

 

In 1988, it was estimated that a lead level of 5 µg/l was exceeded in only 1.1% of 

public water distribution systems in the USA (16). A more recent review of lead 

levels in drinking-water in the USA found the geometric mean to be 2.8 µg/l (10). The 

median level of lead in drinking-water samples collected in five Canadian cities was 

2.0 µg/l (17). A recent study in Ontario (Canada) found that the average concentration 

of lead in water actually consumed over a 1-week sampling period was in the range 

1.1–30.7 µg/l, with a median level of 4.8 µg/l (18). In the United Kingdom in 1975–

1976, there was virtually no lead in the drinking-water in two thirds of households, 

but levels were above 50 µg/l in 10% of homes in England and 33% in Scotland (2). 

In Glasgow (Scotland), where the water was known to be plumbosolvent, the lead 

concentration in about 40% of the samples exceeded 100 µg/l (19).  
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If a concentration of 5 µg/l in drinking-water is assumed, the total intake of lead from 

this source can be calculated to range from 3.8 µg/day for an infant to 10 µg/day for 

an adult.  

 

2.3 Food 

 

Prepared food contains small but significant amounts of lead. Lead content is 

increased when the water used for cooking or the cooking utensils contain lead or the 

food, especially if acidic, has been stored in lead-ceramic pottery ware or lead-

soldered cans. The intake of lead from lead-soldered cans is declining as the use of 

lead-free solders becomes more widespread in the food processing industry (2,20). 

 

A number of estimates based on figures for per capita consumption have been made 

of the daily dietary lead intake—for example, 27 µg/day in Sweden (21); 66 µg/day in 

Finland (22); and 23 µg/day for a 2-year-old in the USA (23). Estimates obtained 

from duplicate diet studies are in the same range and include a mean dietary intake for 

all food and drink of about 40 µg/day for mothers and 30 µg/day for children aged 5–

7 years in England (8) and 53.8 µg/day (0.8 µg/kg of body weight per day) for the 

intake of lead from food for adolescents and adults in Canada (17). Lead intakes for 

adults were 90 µg/day in Belgium, 24 µg/day in Sweden and 177 µg/day in Mexico, 

based on faecal monitoring of lead (24). In some countries, dietary intakes as high as 

500 µg/day have been reported (20). The regular consumption of wine can also result 

in a significant increase in lead intake; an average level of 73 µg/l has been reported 

(25).  

 

2.4 Other routes of exposure 

 

Soils and household dust are significant sources of lead exposure for small children 

(6,26,27), but the levels are highly variable, ranging from <5 µg/g to tens of 

milligrams per gram in contaminated areas. As lead is immobile, levels in 

contaminated soil will remain essentially unchanged unless action is taken to 

decontaminate them (28). The highest lead concentrations usually occur in surface 

soil at depths of 1–5 cm.  

 

In a 2-year study in England during 1984 and 1985, the geometric mean 

concentrations of lead in road dust collected in the vicinity of two London schools and 

in a rural area were 1552–1881 and 83–144 µg/g, respectively. For household dusts in 

London and in a rural area of Suffolk for 3 consecutive years (1983–1985), the 

geometric mean concentrations were 857 and 333 µg/g, respectively (8). Household 

dust concentrations were 332 µg/g in an Edinburgh study (29) and 424 µg/g in one in 

Birmingham (30). 

 

The amount of soil ingested by children aged 1–3 years is about 40–55 mg/day 

(27,31,32). A comprehensive study of a group of 2-year-old urban children indicated 

an intake of lead from dust of 42 µg/day, almost twice the dietary lead intake (30). 

Studies in inner-city areas in the USA have shown that peeling paint or dust 

originating from leaded paint during removal may contribute significantly to 

children’s exposure to lead (33). 
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Lead in household dust will vary according to activities in the household, such as 

sanding old lead-based paint and, in some countries, recycling of industrial materials 

at a household or occupational level. 

 

2.5 Estimated total exposure and relative contribution of drinking-water 

 

More than 80% of the daily intake of lead is derived from the ingestion of food, dirt 

and dust. At 5 µg/l, the average daily intake of lead from water forms a relatively 

small proportion of the total daily intake for children and adults, but a significant one 

for bottle-fed infants. Such estimates have a wide margin of error, as it is not known 

to what extent the general public flushes the system before using tap water; in 

addition, the stagnation time (and hence the lead levels) is highly variable (10). The 

contribution of ingested dust and dirt to the total intake is known to vary with age, 

peaking around 2 years (32).  

 

3. KINETICS AND METABOLISM IN LABORATORY ANIMALS AND 

HUMANS 

 

Adults absorb approximately 10% of the lead contained in food (6), but young 

children absorb 4–5 times as much (34,35); the gastrointestinal absorption of lead 

from ingested soil and dust by children has been estimated to be close to 30% (26). 

Absorption is increased when the dietary intakes of iron or calcium and phosphorus 

are low (36–38). Iron status is particularly important, as children from disadvantaged 

homes are more likely to suffer from anaemia, further increasing their absorption of 

lead (39).  

 

The principal vehicle for the transport of lead from the intestine to the various body 

tissues is the red blood cell (40), in which lead is bound primarily to haemoglobin and 

has a special affinity for the beta, delta and, in particular, fetal gamma chains (41). 

Following its absorption, lead appears both in a soft tissue pool, consisting of the 

blood, liver, lungs, spleen, kidneys and bone marrow, which is rapidly turned over, 

and in a more slowly turned over skeletal pool. The half-life of lead in blood and soft 

tissues is about 36–40 days for adults (42), so that blood lead concentrations reflect 

only the intake of the previous 3–5 weeks. In the skeletal pool, the half-life of lead is 

approximately 17–27 years (42,43). In adults, some 80–95% of the total body burden 

of lead is found in the skeleton, as compared with about 73% in children (44,45). The 

biological half-life of lead may be considerably longer in children than in adults (46). 

Under conditions of extended chronic exposure, a steady-state distribution of lead 

between various organs and systems usually exists (6), and the blood lead 

concentration can therefore be used as a reasonably good indicator of exposure from 

all sources (47); the relationship between them is generally thought to be curvilinear 

in character (2,19). 

 

Placental transfer of lead occurs in humans as early as week 12 of gestation, and 

uptake of lead by the fetus continues throughout development (48). The concentration 

of lead in umbilical cord blood is 80–100% of the maternal blood lead level; the same 

applies to blood lead in the fetus (49–52). 

 

Inorganic lead is not metabolized in the body. Unabsorbed dietary lead is eliminated 

in the faeces, and lead that is absorbed but not retained is excreted unchanged via the 
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kidneys or through the biliary tract (53). Metabolic balance studies in infants and 

young children indicated that, at intakes greater than 5 µg/kg of body weight per day, 

net retention of lead averaged 32% of intake, whereas retention was negative (i.e. 

excretion exceeded intake) at intakes less than 4 µg/kg body weight per day (35). No 

increases in blood lead were observed in infants with low exposure to other sources of 

lead and mean dietary intakes of 3–4 µg/kg of body weight per day (54), thus 

confirming the metabolic data. 

 

4. EFFECTS ON LABORATORY ANIMALS AND IN VITRO TEST SYSTEMS 

 

4.1 Neurological effects 

 

Research on young primates has demonstrated that exposure to lead results in 

significant behavioural and cognitive deficits, such as impairment of activity, 

attention, adaptability, learning ability and memory, as well as increased 

distractibility. Such effects have been observed following postnatal exposure of 

monkeys to lead for 29 weeks in amounts resulting in blood lead levels ranging from 

10.9 to 33 µg/dl (55). These effects persisted into young adulthood, even after levels 

in the blood had returned to 11–13 µg/dl, and were maintained for the following 8–9 

years (56). Studies on small groups of monkeys dosed continuously from birth 

onwards with 50 or 100 µg/kg of body weight per day showed that there were still 

significant deficits in both short-term memory and spatial learning at 7–8 years of age 

(57). 

 

4.2 Reproductive toxicity, embryotoxicity, and teratogenicity 

 

Effects on sperm counts and on the testicles (testicular atrophy) in male rats and on 

estrous cycles in female rats have been observed at blood lead levels above 30 µg/100 

ml (58,59).  

 

4.3 Mutagenicity and related end-points 

 

Results of studies on the genotoxicity of lead are conflicting (54,60–62), but most 

suggest that some lead salts are genotoxic. Lead chloride, ethanoate, oxide and 

tetroxide were inactive in mutagenicity tests on a number of prokaryotes and fungi, 

including Salmonella typhimurium and Saccharomyces cerevisiae. In vitro tests on 

human cells were positive for chromosomal damage in one case and negative in two 

others. In vivo short-term tests on mice, rats, cattle and monkeys were positive in 

three cases (dominant lethal test and chromosome damage to bone marrow cells) but 

negative in five others (60,61). 

 

4.4 Carcinogenicity 

 

Renal tumours have been induced in rats, mice and hamsters exposed orally to high 

levels of lead ethanoate, subacetate or phosphate in the diet. In one study, 5, 18, 62, 

141, 500, 1000 or 2000 mg of lead per kilogram of diet (about 0.3, 0.9, 3, 7, 27, 56 

and 105 mg/kg of body weight per day) were fed to rats for 2 years. Renal tumours 

(mostly tubular epithelial adenomas) developed in male rats at 500, 1000 and 2000 

mg/kg, but only at 2000 mg/kg in female rats (53,62,63).  
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5. EFFECTS ON HUMANS 

 

Lead is a cumulative general poison, with infants, children up to 6 years of age, the 

fetus and pregnant women being the most susceptible to adverse health effects. Its 

effects on the central nervous system can be particularly serious. 

 

5.1 Acute and long-term exposure 

 

Overt signs of acute intoxication, including dullness, restlessness, irritability, poor 

attention span, headaches, muscle tremor, abdominal cramps, kidney damage, 

hallucinations, loss of memory and encephalopathy, occur at blood lead levels of 100–

120 µg/dl in adults and 80–100 µg/dl in children. Signs of chronic lead toxicity, 

including tiredness, sleeplessness, irritability, headaches, joint pain and 

gastrointestinal symptoms, may appear in adults at blood lead levels of 50–80 µg/dl. 

After 1–2 years of exposure, muscle weakness, gastrointestinal symptoms, lower 

scores on psychometric tests, disturbances in mood and symptoms of peripheral 

neuropathy were observed in occupationally exposed populations at blood lead levels 

of 40–60 µg/dl (6).  

 

Renal disease has long been associated with lead poisoning; however, chronic 

nephropathy in adults and children has not been detected below blood lead levels of 

40 µg/dl (64,65). Damage to the kidneys includes acute proximal tubular dysfunction 

and is characterized by the appearance of prominent inclusion bodies of a lead–

protein complex in the proximal tubular epithelial cells at blood lead concentrations of 

40–80 µg/dl (66).  

 

There are indications of increased hypertension at blood lead levels greater than 37 

µg/dl (67). A significant association has been established, without evidence of a 

threshold, between blood lead levels in the range 7–34 µg/dl and high diastolic blood 

pressure in people aged 21–55, based on data from the second United States National 

Health and Nutrition Examination Survey (NHANES II) (68,69). The significance of 

these results has been questioned (70). 

 

Lead interferes with the activity of several of the major enzymes involved in the 

biosynthesis of haem (6). The only clinically well-defined symptom associated with 

the inhibition of haem biosynthesis is anaemia (40), which occurs only at blood lead 

levels in excess of 40 µg/dl in children and 50 µg/dl in adults (71). Lead-induced 

anaemia is the result of two separate processes: the inhibition of haem synthesis and 

an acceleration of erythrocyte destruction (40). Enzymes involved in the synthesis of 

haem include d-aminolaevulinate synthetase (whose activity is indirectly induced by 

feedback inhibition, resulting in accumulation of d-aminolaevulinate, a neurotoxin) 

and d-aminolaevulinic acid dehydratase (d-ALAD), coproporphyrinogen oxidase and 

ferrochelatase, all of whose activities are inhibited (6,40). The activity of d-ALAD is 

a good predictor of exposure at both environmental and industrial levels, and 

inhibition of its activity in children has been noted at a blood lead level as low as 5 

µg/dl (72); however, no adverse health effects are associated with its inhibition at this 

level. 

 

Inhibition of ferrochelatase by lead results in an accumulation of erythrocyte 

protoporphyrin (EP), which indicates mitochondrial injury (47). No-observed-
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adverse-effect levels (NOAELs) for increases in EP levels in infants and children 

exist at about 15–17 µg/dl (73–75). In adults, the NOAEL for increases in EP levels 

ranged from 25 to 30 µg/dl (76); for females alone, the NOAEL ranged from 20 to 25 

µg/dl, which is closer to that observed for children (74,77,78). Changes in growth 

patterns in infants younger than 42 months of age have been associated with increased 

levels of EP; persistent increases in levels led initially to a rapid gain in weight, but 

subsequently to a retardation of growth (79). An analysis of the NHANES II data 

showed a highly significant negative correlation between the stature of children aged 

7 years and younger and blood lead levels in the range 5–35 µg/dl (80). 

 

Lead has also been shown to interfere with calcium metabolism, both directly and by 

interfering with the haem-mediated generation of the vitamin D precursor 1,25-

dihydroxycholecalciferol. A significant decrease in the level of circulating 1,25-

dihydroxycholecalciferol has been demonstrated in children whose blood lead levels 

were in the range 12–120 µg/dl, with no evidence of a threshold (81,82). Tissue lead 

content is increased in calcium-deficient persons, a fact that assumes great importance 

in the light of the increased sensitivity to lead exposure that could result from the 

calcium-deficient status of pregnant women. It has also been demonstrated that 

interactions between calcium and lead were responsible for a significant portion of the 

variance in the scores on general intelligence ratings and that calcium influenced the 

deleterious effect of lead (83). The regulatory enzyme brain protein, kinase C, is 

stimulated in vitro by picomole per litre lead concentrations (an effect similar to that 

produced by micromole per litre calcium concentrations), levels that could be 

expected from environmental exposure (84). 

 

Several lines of evidence demonstrate that both the central and peripheral nervous 

systems are the principal targets for lead toxicity. The effects include 

subencephalopathic neurological and behavioural effects in adults, and there is also 

electrophysiological evidence of effects on the nervous system of children at blood 

lead levels well below 30 µg/dl. Aberrant electroencephalograph readings were 

significantly correlated with blood levels down to 15 µg/dl (85,86). Significant 

reductions in maximal motor nerve conduction velocity (MNCV) have been observed 

in children aged 5–9 years living near a smelter, with a threshold occurring at a blood 

lead level around 20 µg/dl; a 2% decrease in the MNCV was seen for every 10 µg/dl 

increase in the blood lead level (87). The auditory nerve may be a target for lead 

toxicity, in view of reports of reduced hearing acuity in children (88). In the 

NHANES II survey in the USA, the association with blood lead was highly significant 

at all levels from 5 to 45 µg/dl for children 4–19 years old, with a 10–20% increased 

likelihood of an elevated hearing threshold for persons with a blood lead level of 20 

µg/dl as compared with 4 µg/dl (89). The NHANES II data also showed that blood 

lead levels were significantly associated with the age at which infants first sat up, 

walked and started to speak. Although no threshold existed for the age at which the 

child first walked, thresholds existed at the 29th and 28th percentile of lead rank for 

the age at which the child sat up and spoke, respectively (89). 

 

5.2 Reproductive effects 

 

Gonadal dysfunction in men, including depressed sperm counts, has been associated 

with blood lead levels of 40–50 µg/dl (90–93). Reproductive dysfunction may also 

occur in females occupationally exposed to lead (6,61).  
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Epidemiological studies have shown that exposure of pregnant women to lead 

increases the risk of preterm delivery. In a study of 774 pregnant women in Port Pirie 

who were followed to the completion of their pregnancy, the relative risk of preterm 

delivery was more than 4 times higher among women with blood lead levels above 14 

µg/dl than in those with 8 µg or less per decilitre (94).  

 

Elevated cord blood lead levels were associated with minor malformations, such as 

angiomas, syndactylism and hydrocele, in about 10% of all babies. The relative risk of 

malformation doubled at blood lead levels of about 7–10 µg/dl, and the incidence of 

any defect increased with increasing cord lead levels over the range 0.7–35.1 µg/dl 

(95). 

 

5.3 Mutagenicity 

 

Cytogenetic studies in humans exposed to lead (blood lead levels >40 µg/dl) have 

given conflicting results; chromatid and chromosomal aberrations, breaks and gaps 

were reported in 9 of 16 studies, but not in the remainder (60,61). 

 

5.4 Carcinogenicity 

 

The carcinogenicity of lead in humans has been examined in several epidemiological 

studies, which either have been negative or have shown only very small excess 

mortalities from cancers. In most of these studies, there were either concurrent 

exposures to other carcinogenic agents or other confounding factors such as smoking 

that were not considered (60,61). A study on 700 smelter workers (mean blood level 

79.7 µg/l) and battery factory workers (mean blood level 62.7 µg/l) indicated an 

excess of deaths from cancer of the digestive and respiratory systems (96), the 

significance of which has been debated (97,98). There was also a non-significant 

increase in urinary tract tumours in production workers. In a study on lead smelter 

workers in Australia, no significant increase in cancers was seen, but there was a 

substantial excess of deaths from chronic renal disease (99). The International Agency 

for Research on Cancer (IARC) considers that the overall evidence for 

carcinogenicity in humans is inadequate for lead (60), but that inorganic lead 

compounds are probably carcinogenic to humans (124). 

 

5.5 Neurological effects in infants and children 

 

A number of cross-sectional and longitudinal epidemiological studies have been 

designed to investigate the possible detrimental effects that exposure of young 

children to lead might have on their intellectual abilities and behaviour. These studies 

have been concerned with documenting effects arising from exposure to “low” levels 

of lead (i.e. blood lead <40 µg/dl), at which overt clinical symptoms are absent. 

Several factors affect the validity of the conclusions drawn from them (100), 

including the statistical power of the study, the effect of bias in the selection of study 

and control populations, the choice of parameter used to evaluate lead exposure, the 

temporal relationship between exposure measurement and psychological evaluations, 

the extent to which the neurological and behavioural tests used can be quantified 

accurately and reproducibly, which confounding covariates are included in any 
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multiple regression analysis and the effect of various nutritional and dietary factors, 

such as iron and calcium intake (39). 

 

5.6 Cross-sectional studies 

 

A number of cross-sectional studies have been carried out in which many of the above 

factors were taken into account. In one such study in the USA, a group of 58 children 

aged 6–7 years with “high” dentine lead levels (corresponding to a blood lead level of 

approximately 30–50 µg/dl) performed significantly less well than 100 children from 

a “low” lead group (mean blood lead level 24 µg/dl). The children’s performance was 

measured using the Wechsler intelligence test in addition to other visual and auditory 

tests and teachers’ behavioural ratings (101). There was a significant difference of 4 

points and a uniform downward shift in intelligence quotient (IQ) scores. Although 

this study found that a child in the group with “high” dentine lead was 3 times more 

likely to have an IQ of 80 or lower than one in the “low” lead group, it was claimed in 

a 1986 review that the effect was statistically significant only for children with the 

highest lead levels in dentine (blood lead >40 µg/dl) (6).  

 

A similar study in which lead in dentine was used as the indicator of exposure was 

carried out on a cohort of 400 children in the United Kingdom (102). There were 

several consistent but non-significant differences between the high- and low-lead 

groups similar to those observed in the American study, including IQ decrements of 

about 2 points and poorer scores in behaviour indices. In the British study, mean 

blood lead levels in the “high” exposure group (15.1 µg/dl) were lower than the mean 

of the “low” group (24 µg/dl) in the American study, which may explain why the 

results lacked statistical significance. The results of studies on children in Germany 

(103–105) were similar to those of the British study, in that the effect of lead on 

behaviour was only of borderline significance. 

 

In another study (106) involving 500 Edinburgh schoolchildren aged 6–9 years, a 

small (up to 5 points in the British Ability Scales) but significant negative relationship 

was found between blood lead levels and intelligence scores, reading skills and 

number skills. There was a dose–response relationship in the range 5.6–22.1 µg/dl. 

The effect of lead was small compared with that of several of the other 33 variables 

considered. A series of studies (107–109) on about 800 children in the United 

Kingdom with blood lead levels between 4 and 32 µg/dl failed to find any significant 

associations between lead and indices of intelligence and behaviour after 

socioeconomic and family characteristics were taken into account. It was suggested 

that lead might have a noticeable effect only when other factors predisposing to social 

disadvantage (particularly low socioeconomic status or poor home environment) are 

present (108–110). 

 

In a cross-sectional study in Lavrion (Greece) involving 509 primary schoolchildren 

living near a lead smelter, blood lead levels between 7.4 and 63.9 µg/dl (mean 23.7 

µg/dl) were recorded (111). When the IQ was measured by means of the revised 

Wechsler Intelligence Scale for Children and due account taken of 17 potential 

confounders, a significant association was found between blood lead levels and IQ, 

with a threshold at about 25 µg/dl. Attentional performance was also associated with 

blood lead levels in two different tests, but no threshold level was found. This study 

was part of a multicentre collaborative international study on schoolchildren 
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sponsored by the World Health Organization (WHO) and the Commission of the 

European Communities (112). A more or less uniform protocol was used, and quality 

assurance procedures were applied to the exposure analyses. The most consistent 

associations were for visual-motor integration as measured by the Bender Gestalt test 

and for reaction performance as measured by the Vienna Reaction Device. The results 

of many of the remaining tests were inconsistent. The degree of association between 

lead exposure and outcome was very weak (<0.8%), even in the statistically 

significant cases. 

 

The cross-sectional studies are, on balance, consistent in demonstrating statistically 

significant associations between blood lead levels of 30 µg/dl or more and IQ deficits 

of about 4 points. Although there were associations between lower blood lead levels 

and IQ deficits of about 2 points, these were only marginally statistically significant, 

except in the Edinburgh study. It is particularly difficult to determine minimum levels 

above which significant effects occur. 

 

5.7 Longitudinal studies 

 

Longitudinal studies have the advantage as compared with cross-sectional studies that 

more precise estimates of exposure can be made; in addition, the reversibility of the 

effects and the temporal sequence of causality can be investigated. However, such 

studies also have certain disadvantages: for example, repeated psychometric testing 

may lead to artefactual results, and there may also be problems of bias associated with 

attrition within the study population. 

 

The possible relationship between low-level lead exposure during the fetal period and 

in early childhood and later effects on infant and child development has been 

investigated in at least six prospective studies, in the USA (Boston, Cincinnati and 

Cleveland), Australia (Port Pirie, Sydney) and Scotland (Glasgow). Broadly similar 

methodologies were used in all the studies to facilitate comparisons. The Bayley 

Scales of Infant Development or subsets of this test were used to evaluate early 

cognitive development in verbal and performance skills in infants and young children, 

whereas the McCarthy Scales of Children’s Abilities (MSCA) were used in most 

studies on older children. In all the studies, except that in Glasgow, the average 

maternal and cord blood lead concentrations were less than 10 µg/dl (range 6.0–9.5 

µg/dl).  

 

In the Boston Lead Study, three groups of infants and young children were classified 

according to umbilical cord blood lead concentrations, the levels in the low-, middle- 

and high-lead groups being <3, 6–7 and 10–25 µg/dl (mean 14.6 µg/dl), respectively. 

Children were tested twice a year from age 6 months to almost 5 years (113,114). 

After controlling for 12 potential confounders, a significant inverse relationship was 

demonstrated between fetal exposure, measured as lead levels in cord blood, and 

mental development at age 2, as measured using the Bayley Mental Development 

Index (MDI). There was no significant correlation with the children’s current blood 

lead levels, all of which were less than 8.8 µg/dl. However, the results of testing at 

almost 5 years, using the McCarthy Scales, showed an attenuation of this association. 

At 57 months, only the association between intelligence scores and blood lead 3 years 

previously, at age 2, remained significant after controlling for confounding variables 

(114). 
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In a longitudinal study involving 305 pregnant women in Cincinnati (115), an inverse 

relationship was found between either prenatal or neonatal blood lead levels and 

performance in terms both of the Bayley Psychomotor Developmental Index (PDI) 

and the Bayley MDI at the ages of 3 and 6 months for both male infants and infants 

from the poorest families. The mean blood lead levels for neonates and their mothers 

were 4.6 and 8.2 µg/dl, respectively, and all blood lead levels were below 30 µg/dl. 

Multiple regression analysis for boys only showed that, for every increment of 1 µg/dl 

in the prenatal blood lead level, the covariate-adjusted Bayley MDI at 6 months of age 

decreased by 0.84 points. The inverse relationship between MDI and prenatal blood 

lead disappeared at age 1, because it was accounted for, and mediated through, the 

effect of lead on birth weight; however, the Bayley PDI was still significantly related 

to maternal blood lead (116). 

In a prospective study of design similar to that of the Boston study, undertaken at Port 

Pirie, a lead smelter town in Australia, 537 children were studied from birth to 4 years 

(117). The cohort was divided into four groups on the basis of maternal and umbilical 

blood lead, which ranged from a geometric mean of 0.21 to 0.72 µmol/l (4.3–14.9 

µg/dl). The mean blood lead level varied from 9.1 µg/dl at mid-pregnancy to 21.3 and 

19 µg/dl at 2 and 4 years, respectively. The integrated postnatal average blood lead 

level was 19.1 µg/dl. At 6, 15, 24 and 36 months, the developmental status of the 

child was assessed by means of the Bayley MDI; the MSCA were used at 4 years. At 

each age, a consistent but weak inverse relationship was found between concurrent 

postnatal blood lead levels and MSCA scores; no allowance was made for possible 

confounding factors. No such relationship was found for perinatal blood lead. After 

18 covariates considered to be potential confounders were incorporated in the 

multivariate analysis, the integrated blood lead level showed the strongest inverse 

relation with the General Cognitive Index (GCI) score (a subset of the McCarthy 

Scales) at age 4 years, which suggests that the detrimental effect of lead on child 

development is cumulative during early childhood. Repeated analysis restricted to 

children whose blood lead levels were below 25 µg/dl showed that the inverse 

relationship with the GCI score was as strong for this group as for the cohort as a 

whole, thus demonstrating the absence of a clear threshold below which a detrimental 

effect of lead on child development does not occur. 

 

A number of prospective studies have failed to show any consistent association 

between mental development and blood lead, either during the perinatal period or in 

early childhood. In a study carried out on extremely socially disadvantaged mothers 

and infants in Cleveland, Ohio (USA), no relationship was found between blood lead 

at any time and language development, MDI or the results of the Stanford-Binet IQ 

test at age 3 years, after confounding factors, the most important of which was the 

care-giving environment, were taken into account. In this cohort, half the mothers had 

alcohol-related problems, and the average maternal IQ was 79 (118). In a second 

Australian study carried out in Sydney on a relatively prosperous population of 318 

mothers and children, no association was found between blood lead in the mother or 

the child at any age and mental or motor deficits at age 4 years, after account was 

taken of six covariates, including the HOME score (a measure of the care-giving 

environment) (119). A third negative study was that carried out in Glasgow 

(Scotland), where the primary exposure was to high lead levels in water that were 

dramatically reduced by corrosion control measures shortly after the children were 
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born. The cohort was divided into high, medium and low groups, on the basis of 

maternal blood lead, with means of 33.1, 17.7 and 7.0 µg/dl, respectively. Although 

the expected decrements in scores in the Bayley MDI and PDI were observed at ages 

1 and 2 years as lead exposure increased, they could be better accounted for by birth 

weight, home environment and socioeconomic status, as shown by stepwise multiple 

regression analysis (120).  

 

The results of the prospective studies have been somewhat disappointing because of 

the inconsistency between studies. It appears that prenatal exposure may have early 

effects on mental development, but that these do not persist up to age 4, at least not as 

shown by the tests used so far. There are indications that these early effects may be 

mediated through birth weight or other factors. Several studies indicated that the 

generally higher exposures of children in the 18–36-month age range may be 

negatively associated with mental development, but this, too, has not been confirmed 

by other studies.  

 

5.8 2010 Joint FAO/WHO Expert Committee on Food Additives (JECFA) 

evaluation1  

 

There is an extensive body of literature on epidemiological studies of lead. Blood is 

the tissue used most frequently to estimate exposure to lead, and blood lead levels 

generally reflect exposure in recent months. However, if the level of exposure is 

relatively stable, then blood lead level is a good indicator of exposure over the longer 

term. Longitudinal surveys in some countries have shown substantial reductions in 

population blood lead levels in recent decades. Programmes such as those that have 

eliminated the use of leaded petrol are considered to be an important factor, resulting 

in an average reduction of 39% in mean blood lead level over the 5-year period 

following implementation. Reductions in population blood lead levels in some 

countries have also been associated with the discontinued use of lead solder in food 

cans. 

 

Exposure to lead has been shown to be associated with a wide range of effects, 

including various neurological and behavioural effects, mortality (mainly due to 

cardiovascular diseases), impaired renal function, hypertension, impaired fertility and 

adverse pregnancy outcomes, delayed sexual maturation and impaired dental health. 

IARC concluded that there is sufficient evidence in animals but only limited evidence 

in humans for the carcinogenicity of inorganic lead and that inorganic lead 

compounds are probably carcinogenic to humans (group 2A). More recent studies do 

not indicate that any revision to the IARC conclusions is required. 

 

For children, the weight of evidence is greatest, and evidence across studies is most 

consistent, for an association of blood lead levels with impaired neurodevelopment, 

specifically reduction of IQ. Moreover, this effect has generally been associated with 

lower blood lead concentrations than those associated with the effects observed in 

other organ systems. Although the estimated IQ decrease per microgram of lead per 

decilitre of blood is small when viewed as the impact on an individual child (6.9 

points over the range of 2.4–30 μg/dl), the decrement is considered to be important 

when interpreted as a reduction in population IQ. For example, if the mean IQ were 
                                                           
1 This text has been extracted from references 122 and 123. The interested reader should refer to 

reference 123 for additional information and primary references. 
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reduced by 3 points, from 100 to 97, while the standard deviation and other 

characteristics of the distribution remained the same, there would be an 8% increase 

in the number of individuals with a score below 100. Moreover, there would be a 57% 

increase in the number of individuals with an IQ score below 70 (2 standard 

deviations below the expected population mean, commonly considered to be the cut-

off for identifying individuals with an intellectual disability) and a 40% reduction in 

the number of individuals with an IQ score greater than 130 (considered to be the cut-

off for identifying individuals with a “very superior” IQ). Furthermore, the 

Committee noted that a lead-associated reduction in IQ may be regarded as a marker 

for many other neurodevelopmental effects for which the evidence is not as robust but 

which have been observed in children at approximately the same blood lead levels 

(e.g. attention deficit hyperactivity disorder, reading deficit, executive dysfunction, 

fine motor deficit).  

For adults, the adverse effect for which the weight of evidence is greatest and most 

consistent is a lead-associated increase in blood pressure. As with the lead-associated 

reduction in IQ, the increase is small when viewed as the effect on an individual’s 

blood pressure, but important when viewed as a shift in the distribution of blood 

pressure within a population. Increased blood pressure is associated with increased 

risk of cardiovascular mortality. In a meta-analysis of 61 prospective studies 

involving more than 1 million adults, increased blood pressure was associated with 

age-specific increased mortality rates for ischaemic heart disease and stroke, and the 

proportional difference in risk associated with a given absolute difference in blood 

pressure was similar at all blood pressures above 115 mmHg (15 kPa) systolic or 75 

mmHg (10 kPa) diastolic. 

 

6. PRACTICAL CONSIDERATIONS 

 

6.1 Analytical methods 

 

Atomic absorption spectrometry and anodic stripping voltammetry are the methods 

most frequently used for determining the levels of lead in environmental and 

biological materials. Detection limits of less than 1 µg/l can be achieved by means of 

atomic absorption spectrometry (3). Because corrosion of plumbing systems is an 

important source of excessive lead in drinking-water, lead levels in water should be 

measured at the tap, rather than at the drinking-water source, when estimating human 

exposure. 

 

6.2 Prevention and control 

 

Lead is exceptional in that most lead in drinking-water arises from plumbing in 

buildings, and the remedy consists principally of removing plumbing and fittings 

containing it, which requires both time and money. In the interim, all practical 

measures to reduce total exposure to lead, including corrosion control, should be 

implemented. In new installations or repairs, lead-free solder and low lead alloy 

fittings should be used to prevent the introduction of contamination. It is extremely 

difficult to achieve a concentration below 10 µg/l by central conditioning, such as 

phosphate dosing. 
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7. PROVISIONAL GUIDELINE VALUE 

 

The evidence for the carcinogenicity of lead in humans is inconclusive because of the 

limited number of studies, the small cohort sizes and the failure to take adequate 

account of potential confounding variables. Lead has therefore been placed in Group 

2B of the IARC classification, namely possible human carcinogen (evidence 

inadequate in humans, sufficient in animals) (60). However, inorganic lead 

compounds have been placed in Group 2A, namely probable human carcinogen (124). 

 

As there is evidence from human studies that adverse effects other than cancer may 

occur at very low lead levels and that a guideline thus derived would also be 

protective for carcinogenic effects, it is considered appropriate to derive the guideline 

using the TDI approach. 

 

In 1986, JECFA established a provisional tolerable weekly intake (PTWI) of 25 µg of 

lead per kilogram of body weight (equivalent to 3.5 µg/kg of body weight per day) for 

infants and children, which took account of the fact that lead is a cumulative poison, 

so that any increase in the body burden of lead should be avoided (71). The PTWI 

was based on metabolic studies in infants (35,54) showing that a mean daily intake of 

3–4 µg/kg of body weight was not associated with an increase in blood lead levels or 

in the body burden of lead, whereas an intake of 5 µg/kg of body weight or more 

resulted in lead retention. This PTWI was reconfirmed by JECFA in 1993 and 

extended to all age groups (121). 

 

In the second and third editions of the Guidelines, a guideline value of 0.01 mg/l was 

derived on the assumption of a 50% allocation of the PTWI to drinking-water for a 5 

kg bottle-fed infant consuming 0.75 litre of drinking-water per day. As infants were 

considered to be the most sensitive subgroup of the population, this guideline value 

was thought to also be protective for other age groups. 

 

JECFA re-evaluated lead in 2010 (122,123), finding that exposure to lead is 

associated with a wide range of effects, including various neurodevelopmental effects, 

mortality (mainly due to cardiovascular diseases), impaired renal function, 

hypertension, impaired fertility and adverse pregnancy outcomes. Impaired 

neurodevelopment in children is generally associated with lower blood lead 

concentrations than the other effects, the weight of evidence is greater for 

neurodevelopmental effects than for other health effects and the results across studies 

are more consistent than those for other effects. For adults, the adverse effect 

associated with lowest blood lead concentrations for which the weight of evidence is 

greatest and most consistent is a lead-associated increase in systolic blood pressure. 

JECFA concluded that the effects on neurodevelopment and systolic blood pressure 

provided the appropriate bases for dose–response analyses (122,123). 

 

Based on the dose–response analyses, JECFA estimated that the previously 

established PTWI of 25 µg/kg of body weight is associated with a decrease of at least 

3 IQ points in children and an increase in systolic blood pressure of approximately 3 

mmHg (0.4 kPa) in adults. These changes are important when viewed as a shift in the 

distribution of IQ or blood pressure within a population. JECFA therefore concluded 

that the PTWI could no longer be considered health protective, and it was withdrawn 

(122,123).  
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Because the dose–response analyses do not provide any indication of a threshold for 

the key effects of lead, JECFA concluded that it was not possible to establish a new 

PTWI that would be considered to be health protective. JECFA reaffirmed that 

because of the neurodevelopmental effects, fetuses, infants and children are the 

subgroups that are most sensitive to lead (122,123). 

 

There remain uncertainties associated with the epidemiology, which relate to very low 

blood lead levels and end-points that are affected by many factors. Nevertheless, 

because lead exposure arises from a range of sources, of which water is frequently a 

minor one, and as it is extremely difficult to achieve a concentration lower than 10 

µg/l by central conditioning, such as phosphate dosing, the guideline value is 

maintained at 10 µg/l but is designated as provisional on the basis of treatment 

performance and analytical achievability. As this is no longer a health-based guideline 

value, concentrations should be maintained as low as reasonably practical and should 

not be allowed to increase up to the provisional guideline value. 

 

The sampling protocol adopted will depend on the objective of taking the samples. 

First-draw samples typically will have the highest lead concentrations, but this may 

not be reflected in normal use if the same system provides water for toilet flushing, 

etc. Flushed samples, in contrast, give the most consistent values, but reflect the 

minimum exposure of the water to lead. The random daytime samples, although most 

truly reflecting the water that the consumer drinks, give the most variable levels, and 

so it is necessary to collect more samples to determine the mean level of exposure. If 

the objective is to identify the presence of lead in the internal plumbing of a building, 

then the sample should be from the tap (or representative tap) and reflect a worst case.  
 

It needs to be recognized that lead is exceptional, in that most lead in drinking-water 

arises from plumbing in buildings, and the remedy consists principally of removing 

plumbing and fittings containing lead, which requires much time and money. It is 

therefore emphasized that all other practical measures to reduce total exposure to lead, 

including corrosion control, should be implemented. In new installations or repairs, 

lead-free solder and low lead alloy fittings should be used to prevent the introduction 

of contamination. In addition, monitoring for lead requires a different approach from 

that taken for most other contaminants, as lead concentrations vary between properties 

and at different times, depending on the period of time during which the water has 

been stagnant in contact with the lead surfaces. Normally, monitoring is designed to 

identify the incidence of plumbing systems that have high lead concentrations with a 

view to determining management procedures such as corrosion control or providing 

advice to owners and tenants. Where there is a need to verify that lead solder and/or 

high-lead fittings have not been installed in new or repaired systems, the approach 

used is to take a worst-case sample that reflects an extended period of stagnation to 

maximize the chance of identifying the presence of lead. 
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