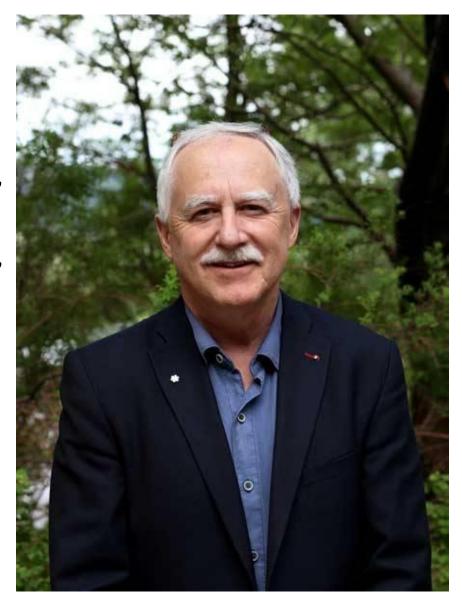

SARS-CoV-2 Modes of Transmission and Related IPC Measures

Tuesday, April 28, 2020

John Conly, University of Calgary and Alberta Health Services, Calgary, Canada


Territorial Acknowledgement

Source: https://www.ucalgary.ca/indigenous

Dr. John Conly

- Medical Director for W21C at the O'Brien Institute for Public Health, and Co-Director for the Snyder Institute for Chronic Diseases at the University of Calgary
- Professor in the Departments of Medicine / Microbiology, Immunology & Infectious Diseases and Pathology & Laboratory Medicine at the Cumming School of Medicine, University of Calgary
- Medical Director for IPC, Alberta Health Services Calgary and Area
- Appointed as a member of the Order of Canada in 2018 for pioneering contributions in IPC, antimicrobial resistance and healthcare innovations.

Faculty/Presenter Disclosure/Acknowledgements

Financial disclosure affiliations

- Honoraria: None
- Speakers' Bureaux, advisory boards: Received funding to attend a meeting on HAI from the CDC and bioMerieux
- **Grants/Clinical Trials**: Local PI for the STRIVE *S. aureus* vaccine trial spinal surgery (Pfizer) and holds grants from CIHR, AI-HS, PHAC, AH, AHS, EDT.
- Patents, royalties: None
- Investments in health organizations: None
- Other influential affiliations: Member of committees with PHAC, WHO and CIHR

Acknowledgements

Dr J Gill/ G van Marle for permission to use some of their slides

Sorting the Message

- Mainstream media and social media in total overdrive
- First major pandemic in the "modern age" of instant social messaging
- Lots of "papers" now published online before even reviewed
- "Science" may be correct but may jump to premature or incorrect conclusions or be incomprehensible; some will never be published
- Even in top quality peer-viewed journals the articles may be premature / over interpreted / incomplete and without necessary limitations
- Many letters and short reports
- Authors, reviewers and journals are under immense pressure to be fast and first in publishing
- Be careful and use your critical appraisal skills and common sense

Basic Viral Facts

- The SARS-CoV-2 causes COVID-19 infection.
- Single strand RNA virus in coronavirus family named from morphology
- It is a respiratory virus (contact droplet **not** airborne tran**smission**)
- Only a few coronaviruses cause human illness (mostly **respiratory** such as colds but also serious respiratory infections SARS and MERS)
- Uses human ACE 2 receptor(Angiotensin converting enzyme 2)
- VERY high affinity for receptor vs. SARS (i.e. readily latches onto respiratory cells? few viruses needed for infection)

SARS -CoV-2

- SARS-CoV-2 likely originated from Asian bats into intermediary animal host (the pangolin) and then to humans
- Virus not mutating significantly. So vaccine more possible but virus less likely to "flame out" or become less pathogenic
- Variation is, however, enough for phylogenetic studies https://nextstrain.org/narratives/ncov/sit-rep/2020-03-27
- IgG and IgM Antibody tests are close: Will be very useful for determining natural history and possible health care staffing
- No one is immune

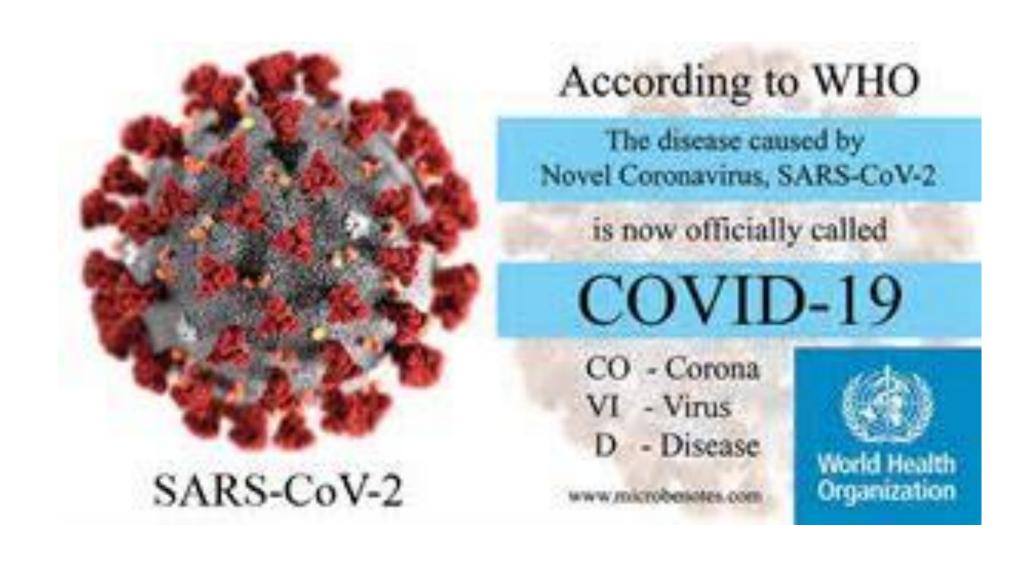
Natural History in Humans

- Proportion of asymptomatic infections unknown and critical for understanding possible transmission and HCW immunity.
- Estimates range 0-6% but models higher
- Incubation period after exposure likely 2-14 days (median ~5 days)
- 97.5% develop symptoms within 11 days
- Of those diagnosed
 - 80% have self-limited mainly respiratory illness probably of ~ 14 days duration
 - 15% have more severe illness requiring medical care +/- hospitalization
 - 5% go to intensive care +/- ventilation
- Risk in hospitalized is mainly respiratory then multi organ failure requiring ventilation and high risk of death ~ 70% ventilated patients
- Progression risk and rate down pathway below is unclear

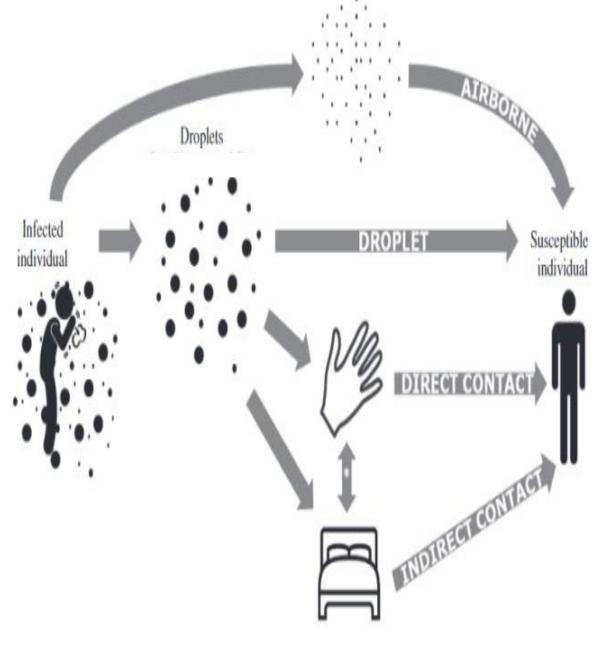
Diagnostic Clinical Challenges

<u>Influenza-like-illness (ILI)</u>

New or changed cough


AND one or more of the following:

- **Fever** (or history of fever in the last 24 hours)
- Muscle aches
- Severe exhaustion/weakness
- Sore throat
- Joint pain


COVID-19

- **Fever** (98%)
- Cough (76%)
- Myalgia or fatigue (44%)
- Sore throat
- Sputum production (28%)
- Headache (8%)
- Mild Diarrhea (? 3%)
- Hemoptysis (5%)
- Additional symptoms skin lesions, strokes

COVID-19 and SARS-CoV-2 Infection Prevention and Control

Transmission Routes

Source: J.A. Otter et al. / Journal of Hospital Infection 92 (2016) 235e250

Transmission Routes

- Droplet and airborne routes create most debate
- Continuum of droplet and airborne routes an important concept
- Particles of a variety of sizes are expelled from the human airway during coughing, sneezing, talking and medical procedures
- Size of these particles and the distance propelled is complex
 - particle sizes variable
 - distance they will be propelled is dependent on the force generated by the individual or the procedure
 - particles may or may not contain the infectious agent
 - infectious agent may or may not be viable
 - concentration of particles affected by many factors: the relative humidity, evaporation level, ,settling velocity, direction of air flow, the number of air changes per hour, temperature, crowding and other environmental factors
- Airborne may be obligate or preferential or opportunistic and refers to particles that stay aloft for minutes or hours (less than 5-10 μ m in diameter) and can be carried by air currents over a measurable distance
- Droplet spread refers to large droplets (>5-10um) that fall within 1 metre

Exposure, Transmission and Invasive Infection

- Exposure to microorganisms
- Not all exposures lead to transmission and invasive infection.
- Exposure occurs when a host comes into contact with an infected source or contaminated environment (e.g., inanimate/animate object or particles in the air)
- Probability of transmission followed by invasive infection → many factors
 - host susceptibility
 - presence of host receptors
 - receptivity of host receptors
 - inoculum
 - viability
 - virulence
 - effectiveness of the hierarchy of controls

SARS-CoV-1/ MERS-CoV Findings Relevant to IPC

- Droplet and contact multiple studies demonstrated compliance with gloves, gowns and medical masks or N95s were adequate to prevent transmission for SARS
- Major risks exposure of eye and mucous membranes to respiratory secretions and AGMPs, ie intubation (opportunistic airborne); no association with contact with urine/stool
- HCW spread associated with inconsistent or improper PPE use for SARS/MERS-CoV outbreaks; Infections in HCWs: 22% and 25% for SARS and MERS, respectively
- Risk factors for nosocomial spread of MERS-CoV in two large outbreaks in Saudi Arabia and South Korea found ER/Ward overcrowding and sub-optimal control of visitors were major factors
- > Transmission of MERS-CoV was not documented in one investigation of mostly asymptomatic and pauci-symptomatic cases and their household contacts
- Asymptomatic cases reported but uncommon one study of MERS cases found 80% of "asymptomatic" persons actually had symptoms on close questioning

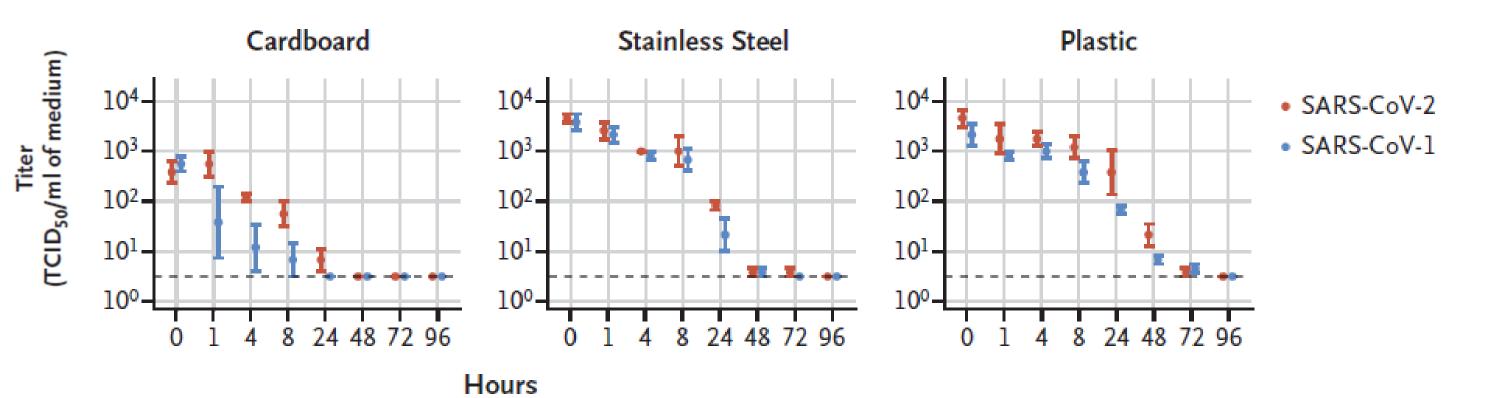
 Seto WH et al Lancet 2003;Raboud J et al Plos One 2010; Jefferson et al Cochrane Rev 2011; Oboho IK et a NEJM 2015;Kim SW CID 2017; Cheng VC et al Antiviral Res 2013; Van Kerkhove MD et al Sci Rep. 2019.

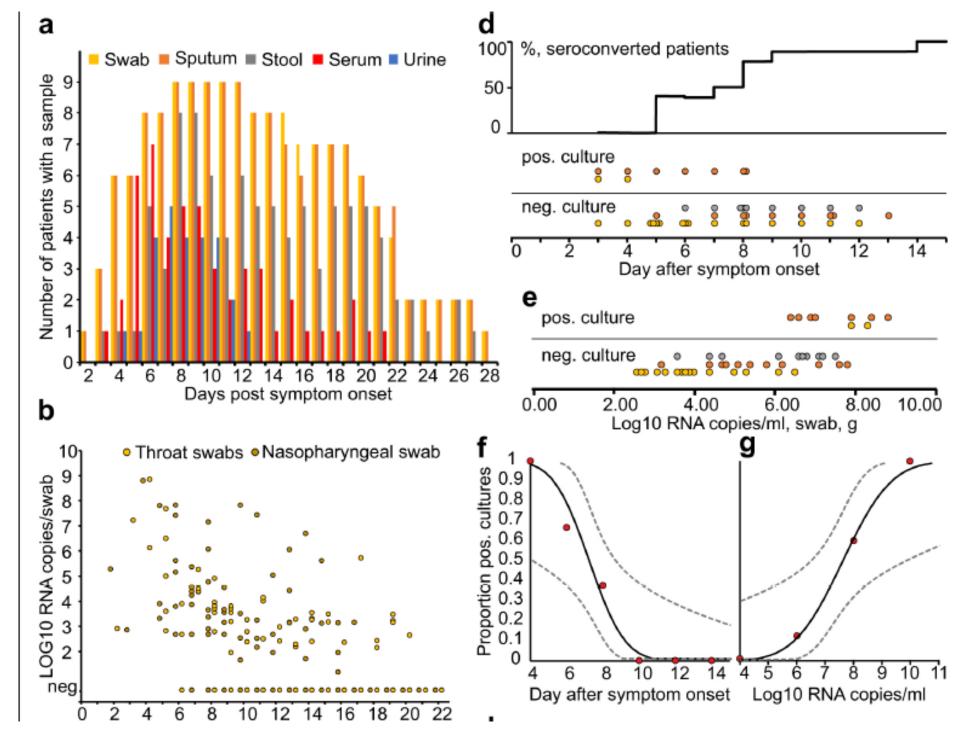
SARS-CoV-2 Detection

Patient specimens

- BAL samples (Zhu NEJM) + viral isolation
- Nasopharyngeal/oropharyngeal (NP/OP) swabs
 - multiple reports of detection of 2019-nCoV RNA in NP/OP swabs; sensitivity varies 71-100% and depends on operator, timing and site of specimen; specificity near 100%
 - > shedding over time varies but recent studies elucidating
 - > viable virus does not correlate well with RT-PCR depending on time

> Serum

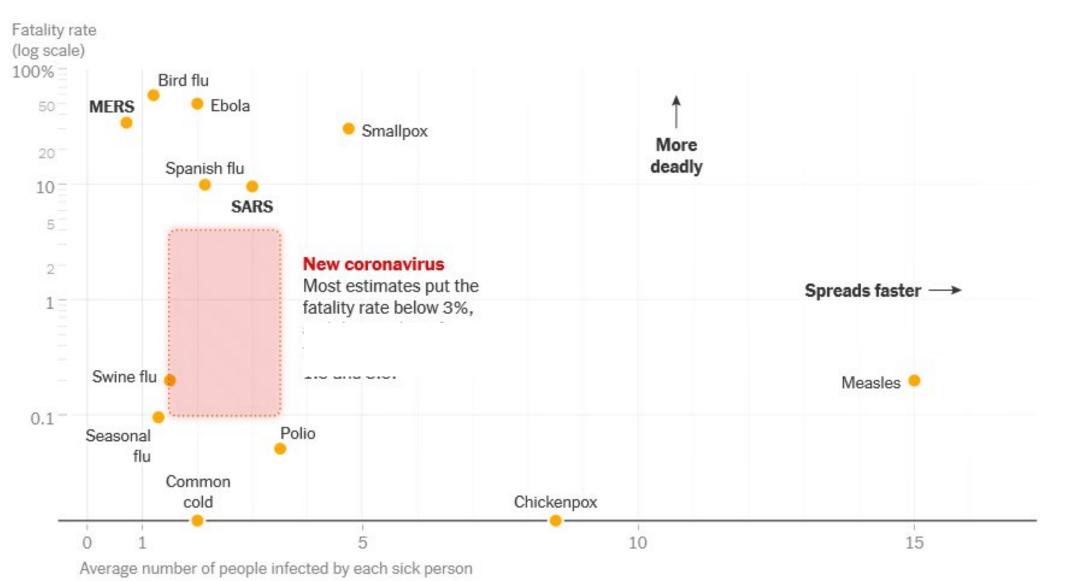

- > Chan (Lancet 2020) also showed + RT-PCR of serum in one patient
- Stool
 - Investigators in Shenzhen and Washington State have detected 2019-nCoV RNA in the stool of infected patients (Holshue NEJM 2020)


Table I Persistence of coronaviruses on different types of inanimate surfaces

Type of surface	Virus	Strain / isolate	Inoculum (viral titer)	Temperature	Persistence	Reference
Steel	MERS-CoV	Isolate HCoV-EMC/2012	10 ⁵	20°C	48 h	[21]
				30°C	8-24 h	
	TGEV	Unknown	10 ⁶	4°C	\geq 28 d	[22]
				20°C	3-28 d	
				40°C	4-96 h	
	MHV	Unknown	10 ⁶	4 °C	\geq 28 d	[22]
				20°C	4-28 d	
				40°C	4-96 h	
	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Aluminium	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	2–8 h	[24]
Metal	SARS-CoV	Strain P9	10 ⁵	RT	5 d	[25]
Wood	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
Paper	SARS-CoV	Strain P9	10 ⁵	RT	4–5 d	[25]
	SARS-CoV	Strain GVU6109	10 ⁶	RT	24 h	[26]
			10 ⁵		3 h	
			10⁴		< 5 min	
Glass	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Plastic	SARS-CoV	Strain HKU39849	10 ⁵	22°-25°C	\leq 5 d	[27]
	MERS-CoV	Isolate HCoV-EMC/2012	10 ⁵	20°C	48 h	[21]
				30°C	8–24 h	
	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
	SARS-CoV	Strain FFM1	10 ⁷	RT	6–9 d	[28]
	HCoV	Strain 229E	10 ⁷	RT	2–6 d	[28]
PVC	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Silicon rubber	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Surgical glove (latex)	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	≤ 8 h	[24]
Disposable gown	SARS-CoV	Strain GVU6109	10 ⁶	RT	2 d	[26]
			10 ⁵		24 h	
			10⁴		1 h	
Ceramic	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Teflon	HCoV	Strain 229E	10 ³	21°C	5 d	[23]

MERS = Middle East Respiratory Syndrome; HCoV = human coronavirus; TGEV = transmissible gastroenteritis virus; MHV = mouse hepatitis virus; SARS = Severe Acute Respiratory Syndrome; RT = room temperature.

Survival SARS-CoV-2



- Virus was
 readily isolated during
 the first week of
 symptoms from a
 considerable
 fraction of samples
 (16.66% in swabs, 83.33%
 in sputum samples)
- No isolates of virus
 obtained from
 samples taken after day
 8 in spite of ongoing high
 viral loads by RT-PCR

Wolfel et al Nature. 2020 Apr 1. doi: 10.1038/s41586-020-2196-x. [Epub ahead of print]

How SARS-CoV-2 spread compares to other viruses

Basic reproductive number (R₀)

the average number of individuals infected by a case over the infectious period, in a fully susceptible population.

Most major studies suggest it is falling into range of 2.20 -2.68

Korea and Italy of 2.60 (based on initial case growth)

Mode Transmission SARS-CoV-2

- Droplet contact considered predominant route
 - Consistent with SARS-CoV-1, MERS-CoV
 - Consistent with R₀ of other droplet-contact respiratory viruses
 - WHO-China Joint Mission on COVID-19 in China with 75,465 cases supported person-to-person droplet and fomite transmission
 - 78-85% of the investigated infection clusters occurred within families, with an intrahousehold 2° attack rate of 3-10%, not consistent with airborne transmission

References: WHO- China Joint Mission Report 2020

Reports against/for Airborne Transmission for CoVs

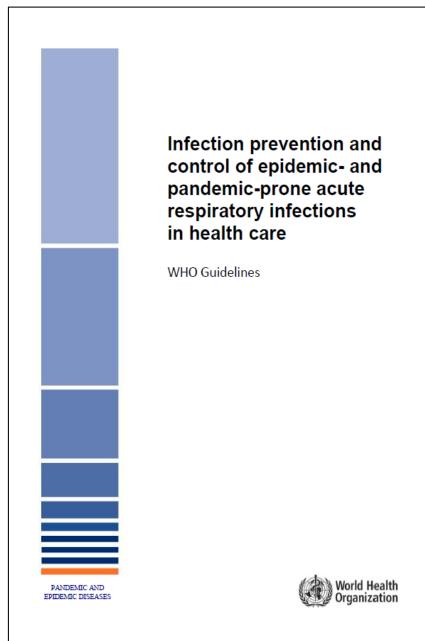
- 41 HCW exposure over 10 minutes within 2 meters to a COVID-19 patient during multiple AGMPs, 85% surgical masks and no transmission events
- COVID-19 + who was nursed in an open cubicle of a general ward before the diagnosis was made and 76 tests 52 contacts, some without PPE and no transmissions
- No evidence of COVID-19 transmission to passengers seated around a COVID+ passenger long flight
- No transmission events in 5544 continuous person hours HCW exposure to 132 inpatient COVID+ pts using medical masks as part of PPE routine care

- Amoy Garden outbreak Sars-CoV-1 > 300 residents possible aerosol event vs rats
- Report of a bus transmission 4.5 meters distance in Chinese report (translated)
- Outbreak in air-conditioned (AC) restaurant China with 10 persons with 1 meter distance between tables along flow of air from the AC
- Experimental study with 3-jet Collison nebulizer creating aerosol of viable SARS-CoV-2
- Systematic review of droplet dispersion but mainly modelling studies; no clinical settings or epidemiologic data

References: Yu IT et al N Engl J Med. 2004 Apr 22;350(17):1731-9; Luo Y et al. Pract Prev Med. 2020-03-05. Lu J et al. MMWR 26:7 July 2020; Van Doremalen N et al. N Engl J Med.2020 Apr 16;382(16):1564-1567; Bahl P et al. JID 2020;XX:1–8

Reports against/for Airborne Transmission for CoVs

- SARS-CoV-2 (RT-PCR) in 1/13 (7.7%) environmental samples but 0/8 air samples collected 10 cm from the patient's chin in Hong Kong
- SARS-CoV-2 (RT-PCR) in 17/22 (77%) environmental samples but 0/5 air sample sites including beside the patient collected in Singapore
- None/10 air samples for SARS-CoV-2 (RT-PCR) with samplers with fresh DMEM 2 to 5 m away from the patient (severely ill)


- SARS-CoV-2 (RT-PCR) in 20/37 air samples at 1-113 copies/m³ highest ICU – multiple areas hospital
- SARS-CoV-2 (RT-PCR) in 126/163 samples (77.3%) collected in this study, 0 to 1.75 copies/ μ L and air samples 2.86 copies/L including outside pt rooms; no viable virus cultivated in any of the 163 samples
- SARS-CoV-2 (RT-PCR) high touch surface contamination was shown in 10/15 (66.7%) rooms 1840 to 3380 RNA copies per m³; viabilty not done

References: Liu Y et al Nature Med. 2004 Apr 27; Santarpia JL et al 2020 medRxiv preprint; Chia PY, 2020, medRxiv preprint

Transmission Risks of SARS-CoV-2

- Prospective cohort study of 4,950 persons who had a close contact with confirmed COVID-2019 patients (n=129;2.6% [6.2% asymptomatic/38% mild/51.9% moderate/3.9% severe])
- RT- PCR q2 days; daily temp and symptom check
- Uni- and multivariable regression analysis (SAS) were performed for risk factors for developing COVID-19
- Age (1.8-4.2% 0-17 to > 60 yrs); household and multiplicity of contacts (10.2-13%) highest risk whereas public transport and HCW lowest (1.0 and 0.1%) and severity were (0.33 % asymptomatic/3.3% mild/5.6% moderate/6.2% severe]) and sputum production and fever all significant risk factors in MV analysis
- RT-PCR sensitivity 71.9%; 93.2%; 96.9% 100% at 1,2,3 and 6 tests

Building upon key existing WHO guidance

Infection prevention and control during health care for probable or confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection

Interim guidance
Updated October 2019

WHO/MERS/IPC/15.1 Rev 1

https://apps.who.int/iris/bitstream/handle/10665/174652/WHO MERS IPC 15.1 e ng.pdf;jsessionid=718B13F93CBB3B2DD7CCAA2623321BDF?sequence=1

https://www.who.int/csr/bioriskreduction/infection_control/publication/en/

2019 n-CoV: WHO guidance

Home care for patients with suspected novel coronavirus (nCoV) infection presenting with mild symptoms and management of contacts

Interim guidance 20 January 2020

https://www.who.int/publications-detail/home-care-for-patients-with-suspected-novel-coronavirus-(ncov)-infection-presenting-with-mild-symptoms-and-management-of-contacts

https://www.who.int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125

Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected

Interim guidance

25 January 2020

Infection prevention and control during health care when COVID-19 is suspected

Interim guidance 19 March 2020

https://www.who.int/publications-detail/

infection-prevention-and-control-during-health-care-whennovel-coronavirus-(ncov)-infection -is-suspected-20200125

Principles of IPC Strategies associated with Health Care for Suspected COVID-19

- 1. Ensuring triage, early recognition, and source control (isolating patients with suspected COVID-19)
- 2. Applying standard precautions for all patients
- 3. Implementing empiric additional precautions (droplet and contact and, whenever applicable, airborne precautions) for suspected cases of COVID-19
- 4. Implementing administrative controls
- 5. Using environmental and engineering controls

Ensuring triage, Early Recognition, and Source Control

- Encourage HCWs to have a high level of clinical suspicion
- Establish a well-equipped triage station at the entrance to the facility, supported by trained staff
- Institute the use of screening questionnaires according to the updated case definition; refer to the Global Surveillance for human infection with coronavirus disease (COVID-19) for case definitions
- Post signs in public areas reminding symptomatic patients to alert HCWs

Applying Standard Precautions for all Patients

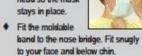
- Ensure that all patients cover their nose and mouth with a tissue or elbow when coughing or sneezing
- Offer a medical mask to patients with suspected COVID-19 while they are in waiting/public areas or in cohorting rooms
- Perform hand hygiene after contact with respiratory secretions
- Hand hygiene includes either cleansing hands with an alcohol-based hand rub or with soap and water
- Alcohol-based hand rubs are preferred if hands are not visibly soiled
- Wash hands with soap and water when they are visibly soiled

Implementing Empiric Additional Precautions

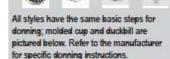
- Contact and droplet precautions
 - Gloves, gowns, medical masks, eye protection
 - Donning and doffing appropriately
 - Requires education for HCW populations
 - Single use or dedicated equipment
 - Limit visitors
 - Refrain touching face/mask/eyes
 - Disinfect high touch surfaces
- Airborne precautions for aerosol-generating procedures
 - Well ventilated room
 - Use a particulate respirator at level of a NIOSH-certified N95 or (EU) standard FFP2, or equivalent

Putting on (Donning) Personal Protective Equipment (PPE)

- A Using an alcohol-based hand rub is the preferred way to clean your hands.
- B If your hands look or feel dirty, soap and water must be used to wash your hands.


2 Gown

- A Make sure the gown covers from neck to knees to wrist.
- B Tie at the back of neck and waist.


3a Procedure/Surgical mask

 Secure the ties or elastic around your head so the mask stays in place.

There are different styles of N95 respirators (pictured below). They include: a) molded cup, b) duckbill, c) flat-fold and d) v-fold

3b N95 respirator

- A Pre-stretch both top and bottom straps before placing the respirator on your face.
- B Cup the N95 respirator in your hand.
- C Position the N95 respirator under your chin with the nose piece up. Secure the elastic band around your head so the N95 respirator stays in place.
- D Use both hands to mold the metal band of the N95 respirator around the bridge of your nose.
- E Fit check the N95 respirator.

Eye protection or face shields

- Place over the eyes (or face).
- · Adjust to fit.

May 2014

Taking off (Doffing) Personal Protective Equipment (PPE)

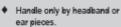
- A Grasp the outside edge of the glove near the wrist and peel away from the hand, turning the glove inside-out.
- Hold the glove in the opposite gloved hand.
- B Slide an ungloved finger or thumb under the wrist of the remaining glove.
- C Peel the glove off and over the first glove, making a bag for both gloves.
- Put the gloves in the garbage.

HAND HYGIENE

- Using an alcohol-based hand rub is the preferred way to clean your hands.
- B If your hands look or feel dirty, soap and water must be used to wash your hands.

Gown

- A Carefully unfasten ties.
- B Grasp the outside of the gown at the back of the shoulders and pull the gown down over the arms.
- Turn the gown inside out during removal.
- Put in hamper or, if disposable, put in garbage.


HAND HYGIENE

- ♦ Clean your hands. (See No. 2)
- Exit the patient room, close the door and clean your hands again.

5 Eye protection or face shield

- Carefully pull away from face.
- Put reusable items in appropriate area for cleaning.
- Put disposable items into garbage.

Mask or N95 respirator

- Bend forward slightly and carefully remove the mask from your face by touching only the ties or elastic bands.
- Start with the bottom tie, then remove the top tie.
- Throw the mask in the garbage.

There are different styles of N95 respirators but all styles have the same basic steps for doffing.

7

HAND HYGIENE

Clean your hands. (See No. 2)

May 2014

www.albertahealthservices.ca

www.albertahealthservices.ca

Administrative Measures related to Health Care Workers

- Provision of adequate training for HCWs
- Ensuring an adequate patient-to-staff ratio
- Establishing a surveillance process for acute respiratory infections potentially caused by COVID-19 virus among HCWs
- Ensuring that HCWs and the public understand the
- Importance of promptly seeking medical care
- Monitoring HCW compliance with standard precautions and providing mechanisms for improvement

Using Environmental and Engineering Controls

- Address basic infrastructure of the health care facility₁and aim to ensure adequate ventilation
- Maintain adequate environmental cleaning
- Separation of at least 1 metre between all patients
- Ensure that cleaning and disinfection procedures are followed consistently and correctly
- Manage laundry, food service utensils and medical waste in accordance with safe routine procedures

References

- World Health Organization
 - http://covid19.who.int

Questions ?