

Context and key assumptions

- Booster dose(s) are administered to restore a (previously) sufficient protective immune response rate in a vaccinated population that achieved an initial sufficient immune response rate but with time (e.g., through waning immunity and/or new variants) has fallen below a rate deemed sufficient in the vaccinated population.
- While accumulating evidence support the use of specific immunoassays as correlate(s) of *initial protection*, insufficient evidence exists to determine whether those or other immunoassays are correlate(s) of *durability of protection*
- Immunogenicity readouts provide a *potential* early signal of the likelihood for cross-protection of an immune response against new variants and *supplementary* data to vaccine effectiveness evidence

Response to a 50-µg booster dose of mRNA 1273

OPEN

Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis

Angela Choi^{1,4}, Matthew Koch^{1,4}, Kai Wu^{1,4}, Laurence Chu^{1,2}, LingZhi Ma¹, Anna Hill¹, Naveen Nunna¹, Wenmei Huang¹, Judy Oestreicher¹, Tonya Colpitts¹, Hamilton Bennett¹, Holly Legault¹, Yamuna Paila¹, Biliana Nestorova¹, Baoyu Ding¹, David Montefiori², Rolando Pajon¹, Jacqueline M. Miller¹, Brett Leav¹, Andrea Carfi¹, Roderick McPhee¹ and Darin K. Edwards¹

Overview

Study	Choi et al, Nat. Med. 2021
Trial ID	NCT04405076
Country	USA
Vaccine	mRNA-1273 (50 μg)
Population	Phase 3 COVE, Healthy adults, 27-79y
N	60 (20 per group)
D2–D3 interval	5.4 – 7.5 mo

Exploratory Analysis Against Variants of Concern

WT: original strain (D614G)
Research VSV pseudoneutralization assay used

Source: https://www.fda.gov/media/153089/download

Conclusions:

- Waning: statistically significant decline in nAb (psVNA; ID₅₀) titer across all strains studied (original D614G, Beta, Gamma, and Delta)
- **Boost:** induced strong anamnestic responses (up to 4.4-fold higher than peak titers post-primary series), with a 23- to 44-fold increase from titers 6-8 months after primary series, including for variants of concern studied

Response to a 30-µg booster dose of BNT162b2

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3

October 21, 2021

N Engl J Med 2021; 385:1627-1629 DOI: 10.1056/NEJMc2113468

Overview

Study	Falsey et al, NEJM 2021
Trial ID	NCT04368728
Country	USA
Vaccine	BNT162b2 (30 μg)
Population	Part 1 Phase 1/2/3 , Healthy/disease stable adults, 18-85y
N	11 (24-55y); 12 (65-75y)
D2–D3 interval	7.9 to 8.8 mo

Source: https://www.nejm.org/doi/10.1056/NEJMc2113468

NA/a at a sa at at at a att

Conclusions:

- Waning: statistically significant decline in nAb titers (50% plaque-reduction neutralization test) against original D614G and Beta strain
- **Boost:** induced strong anamnestic responses (5 to 12-fold higher than peak titers post-primary series), with a 25 to 50-fold increase from titers 8-9 months after primary series, including for variants of concern studied

Response to a second dose of Ad26.COV2.S

medRxiv preprint doi: https://doi.org/10.1101/2021.08.25.21262569; this version posted August 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a licensi display the preprint in perpetuity.

It is made available under a CC.By-NC-10.4.0 international license.

Durability of antibody responses elicited by a single dose of Ad26.COV2.S and substantial increase following late boosting

Authors: Jerald Sadoff; ¹⁸ Mathieu Le Gars, ¹⁸ Vicky Cardenas, ² Georgi Shukarev, ¹ Nathalie Vaissiere, ³ Dirk Heerwegh, ³ Carla Truyers, ³ Anne Marit de Groot, ¹ Gert Scheper, ¹ Jenny Hendriks, ¹ Javier Ruiz-Guiñazú, ³ Frank Struyf, ³ Johan Van Hoof, ¹ Macaya Douoguih, ¹ Hanneke Schuitemaker ¹

Janssen COV1001: Humoral Immune Responses Persist Over Time, Following a Single Dose (18-55 and ≥ 65 years)

SR: % seroresponse SP: % detectable Ab

Overview

Study	Sadoff et al, medRxiv 2021		
Trial ID	NCT04436276		
Country	USA; Belgium		
Vaccine	Ad26.COV2.S (5×10 ¹⁰ vp)		
Population	COV1001 Healthy adults, 18-55; <u>></u> 65y		
N	17-25 per group		
D1–D2 interval	6 mo		

COV1001: Boost at 6 Months Increases Antibody Titers by 9- to 12-fold

COV1001: Booster 6 Months After Single-Dose Primary Regimen Proportionally Increases nAb Levels Against Variants of Concern

Source: https://www.fda.gov/media/153129/download

Conclusions:

- Waning: over >200d after single dose, nAb (wtVNA) GMT declined minimally in 18-55y and 2.3-fold in <u>></u>65y
- Boost: induced strong anamnestic spike Ab GMT responses (9- to 12-fold higher than peak titers after single dose), with 2.9- to 4.2-fold increase in nAb (psVNA) GMT across all strains studied (original D614G, Beta, Gamma,
- 6 Delta, and Lambda)

MixNMatch SWITCH Thailand Cohort

Overview

Study	Atmar et al; medRxiv	
Country	USA	
Study type	Non-randomised CT	
Population	Adults, 19–85y	

Homologous boost Ad26 & mRNA

Overview

Study	Sablerolles et al; medRxiv
Country	Netherlands
Study type	Single-blind RCT
Population	Adults, 18–65y

Homologous boost Ad26

Overview

Study	Angkasekwinai et al; medRxiv
Country	Thailand
Study type	Cohort
Population	Adults, 18–60y

Homologous boost ChAdOx1

COV-BOOST

Overview

Study	Munro et al; Lancet	
Country	UK	
Study type	Observer-blind RCT	
Population	Adults, 18–65y	

Homologous	Α	Age (years)	Geometric mean	n	Geometric mean ratio (95% CI)
boost	Anti-spike Ig Group A	G, ELU/mL			
ChAdOx1	Control	<70 ≥70 <70 ≥70	800 (629–1016) 774 (579–1034) 2828 (2246–3560) 2152 (1653–2802)	45 45 48 51	Ref Ref 3-6 (2·7-4·8)
BNT162b2	Group B Control BNT	<70 <70 ≥70 <70 ≥70	3843 (3095–4770) 2571 (2029–3257) 24781 (21353–28760) 30326 (25054–36709)	51 51 43 51 45	3-0 (2-4-3-9) Ref Ref (5-7-8-3) (10.2 (7-8-13.4)
				Favours control	5 10 15 20 25 30 35 40 Favours vaccine

Inactivated vaccine homologous 2- and 3-dose schedules - Summary

- Antibodies induced by 2-dose primary series of CoronaVac and BIBP wane swiftly over 6 months, becoming undetectable in over two-thirds of study participants
- Antibodies binding to Alpha, Beta, and Delta variants were significantly lower by 3 months after Dose 2 (D2) of CoronaVac compared to 2-3 weeks after D2
- Dose 3 (D3) of CoronaVac/BIBP at 6 months elicits peak nAb titres 3–8-fold higher than those observed after D2; whereas D3 of CoronaVac given 1 month after D2 elicits peak nAb titres 1.3–2-fold higher than those observed after D2

Summary

- Based on limited immunogenicity data, neutralizing and/or binding assay titers:
 - variably decline over time for mRNA, viral vector (VV), and inactivated virus (IA) vaccines
 - rate of decline: IA > mRNA > VV
 - greater decline in older adults
- A homologous booster dose restores neutralizing and/or binding assay titers to at least peak post-primary series and frequently several fold higher (i.e., anamnestic response)
- As vaccine effectiveness evidence accumulates and models are refined, immunoassays may be found to be reliable predictors of restored protective immunity

Booster Dose Vaccine Effectiveness

December 7, 2021

Minal K. Patel, MD

Daniel R. Feikin, MD

Definitions

	Efficacy	Effectiveness
Absolute	RCT comparing vaccinated to unvaccinated	Real world (observational) studies comparing vaccinated to unvaccinated
Relative	RCT comparing boosted to non-boosted	Real world (observational) studies comparing boosted to non-boosted

- Absolute Efficacy/Effectiveness will always be higher than relative as the non-boosted still have some protection resulting in a lower estimate
- The difference between the relative and absolute efficacy/effectiveness is dependent on the non-boosted efficacy/effectiveness compared to the unvaccinated

Vaccine Efficacy

Janssen-Ad26.COV 2.S ENSEMBLE 2 RCT

- Global RCT designed to measure 2 dose absolute vaccine efficacy with 56 day interval
 - 31,300 participants randomized to 2 doses or 0 doses
 - Due to availability of other vaccines/unblinding, only 4,245 (29%) were in per protocol analysis, with median follow up of 36 days post dose 2 (range 0-172 days)
 - 38% Alpha, 4% Delta

	1 dose efficacy 15- 56 days post dose 1	2 dose efficacy 14+ days post dose 2
Infection		51 (30-66%)
Asymptomatic Infection		34 (-6-60%)
Moderate- severe/critical	68% (58-76%)	75% (55-87%)
Severe critical	92% (76-98%)	100% (33-100%)

Pfizer BioNTech-Comirnaty (BNT162b2) Booster RCT C4591031

- 10,000 persons ≥16 years who had already received 2 doses of BNT162b2
 - Randomized with age stratification to receive either placebo or 3rd dose at least 6 months after the 2nd dose
 - 65% of 3rd/placebo administered 10-12 months after dose 2
- Results
 - Relative VE against disease in those without prior infection (7 days-<2 months post boost): 95.3% (89.5-98.3)
 - No difference by age group, sex, race, ethnicity, comorbidity

Cumulative Incidence Curve for First COVID-19 Occurrence After Booster Vaccination – All Available Efficacy Population Curves diverge rapidly, starting even before 7 days after booster

Immunization, Vaccines and Biologicals

Vaccine Effectiveness

Israel: Relative VE of Pfizer BioNTech-Comirnaty -Clalit

- Methods
 - July 30-Sept 23
 - Cohort study with 1:1 matching of persons with 3rd dose versus those who received 2nd dose 5+ months ago
 - Outcome: infection, disease, hospitalization, severe, death 7+ days post dose 3
- Results
 - 728,321 in each arm
 - Median follow up: 13 days (IQR 6-21, max 55 days)
- · Risk of bias: Moderate

	# of events in 3 dose	# of events in 2 dose	Relative VE of 3 vs 2 dose
Infection	1135	6131	88 (87-90)
Disease	514	3345	91 (89-92)
Hospitalization	29	231	93 (88-97)
Severe disease*	17	157	92 (82-97)
Death	7	44	81 (59-97)

*US FDA definition

Israel: Relative VE against infection of Pfizer BioNTech-Comirnaty —Maccabi Study 1

- Methods
 - ≥40 year olds with 2nd or 3rd dose between January 2021-August 21, 2021
 - Tested between August 1-August 21
 - Different types of analyses
 - Test-negative design
 - Matched case-control
- Results (n=182,076 tests in 153,753 persons)

Time after booster	Test-negative analysis	Matched case-control (conditional)
7-13 days	48% (42-54%)	68% (64-72%)
14-20 days	79% (72-84%)	84% (79-88%)

- Risk of Bias: Moderate
- Conclusion: Relative vaccine effectiveness against infection of Pfizer BioNTech-Comirnaty booster dose is high

Israel: Relative VE against infection of Pfizer BioNTech-Comirnaty —Maccabi Study 2

- Methods
 - August 7-October 15
 - Retrospective cohort study with matching
 - Comparing those 2-dose vaccinated in January-February to 3 dose vaccinated (>7 days)
- Results
 - n=141,437 3 dose; n=724,540 2→3 dose; 81,244 only 2 dose
 - Relative VE against infection: 89.1% (87.5-90.5)
 - <60 years: 88.4% (87.7-89.1)
 - ≥60 years: 87.7% (86.4-88.8)
- · Risk of bias: Serious

Israel: Relative VE against infection and severe disease, and death—MOH Absolute rates of the control of the c

Methods

- July 30-October 6
- Persons who had 2 doses of Pfizer BioNTech– Comirnaty ≥5 months earlier
 - Compared rates boosted (≥12 days) to nonboosted
- Unlike HMO analyses, based on rates in national surveillance data
- Results
 - 4,621,836 persons
- · Risk of Bias: Serious

Absolute rates of confirmed infections per 100,000 risk-days

12+ days following booster versus 2nd dose only. Based on data from booster eligibility in age group until 10/4

Outcome	Age Group	Relative VE (95% CI)
Infection	16-29	94% (94-95)
	30-39	89% (88-89)
	40-49	90% (89-90)
	50-59	92% (91-92)
	≥60	92% (92-92)
Severe Disease	40-59	95% (90-98)
	≥60	95% (94-96)
Death	≥60	93% (89-96)

Bar-On, Y. M., Goldberg, Y., Mandel, M., Bodenheimer, O., Freedman, L., Kalkstein, N., Mizrahi, B., Alroy-Preis, S., Ash, N., Milo, R., & Huppert, A. (2021). Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel. New England Journal of Medicine, 385(15), 1393-1400. https://doi.org/10.1056/NEJMoa2114255
Bar-On, Y. M., Goldberg, Y., Mandel, M., Bodenheimer, O., Freedman, L., Alroy-Preis, S., Ash, N., Huppert, A., & Milo, R. (2021). Protection Across Age Groups of BNT162b2 Vaccine Booster against Covid-19. MedRxiv, 2021.10.07.21264626. https://doi.org/10.1101/2021.10.07.21264626

UK: VE against disease of Pfizer BioNTech-Comirnaty booster

- TND study of ≥50 years evaluating VE against symptomatic disease
 - September 13-November 1, 2021
 - 2 doses of AstraZeneca-Vaxzevria+1 Pfizer BioNTech-Comirnaty or 3 doses of Pfizer BioNTech-Comirnaty compared to
 - 2 dose recipients >140 days post dose 2 but no dose 3
 - Unvaccinated

Comparison group	2 AstraZeneca-Vaxzevria+ 1 Pfizer BioNTech-Comirnaty (14+ days)	3 Pfizer BioNTech- Comirnaty (14+ days)
Relative VE comparing to 2 dose recipients >140 days post dose 2	87.4% (84.9-89.4)	84.4% (82.8-85.8)
Absolute VE comparing to unvaccinated	93.1% (91.7-94.3)	94.0 (93.4-94.6)

Risk of bigs: Moderate

Andrews, N., Stowe, J., Kirsebom, F., Gower, C., Ramsay, M., & Lopez Bernal, J. (2021). Effectiveness of BNT162b2 (Comirnaty, Pfizer-BioNTech) COVID-19 booster vaccine against covid-19 related symptoms in England: test negative case-control study. MedRxiv, 2021.11.15.21266341. https://doi.org/10.1101/2021.11.15.21266341

Chile: Absolute VE against infection, disease, hospitalization, ICU admission of 3 vs 2 vs 0

- Cohort administrative database study
 - In cohort 2 dose Sinovac-CoronaVac+ booster
 - 1.7 million AstraZeneca-Vaxzevria
 - 966,000+ Pfizer
 BioNTech-Comirnaty
 - 165,000+ Sinovac-CoronaVac
 - Risk of Bias: None (presentation, no preprint)

	Infection	Disease	Hospitalization	ICU admission
2 doses of Sinovac- CoronaVac	52 (52-53)	55 (55-56)	84 (83-84)	87 (86-88)
3 doses of Sinovac- CoronaVac	68 (61-73)	71 (64-76)	75 (65-82)	79 (59-89)
2 doses Sinovac- CoronaVac+AstraZ eneca-Vaxzevria	90 (89-91)	93 (92-94)	96 (95-97)	98 (96-99)
2 doses of Sinovac- CoronaVac+Pfizer BioNTech- Comirnaty	93 (91-94)	95 (93-96)	89 (84-93)	90 (78-95)

USA: Relative VE in Veterans against Infection and Hospitalization

• Match cohort study from September 23-November 25, 2021

	Pfizer BioNTech- Comirnaty	Moderna-mRNA-1273
Number of matched pairs	74,032	55,098
Median age (IQR)	72 (64-75)	72 (66-77)
% Males	94%	95%
Median follow up time (IQR)	30 days (14-44)	16 days (8-25)
Relative VE against Infection (95% CI)	45.7% (37.9 -52.5)	46.6% (36.4 - 55.3)
Relative VE against Hospitalization (95% CI)	44.8% (26.6 - 58.4)	50.0% (26.2 - 66.1)

IQR=Interquartile Range VE=Vaccine Effectiveness CI=Confidence Intervals

· Risk of Bias: pending

Immunization, Vaccines and Biologicals

Summary

	# of Studies	Infection	Disease	Hospitalization/ Severe disease/death
2 doses of Janssen-Ad26.COV 2.S	1	51% efficacy	75% efficacy	100% efficacy
3 doses of Pfizer BioNTech-Comirnaty	5	46-94% rVE	95% relative efficacy 84-91% rVE 94% aVE	45-95% rVE
2 doses AstraZeneca-Vaxzevria+3 rd Pfizer BioNTech-Comirnaty	1		87% rVE 93% aVE	
2 doses Sinovac-CoronaVac+3 rd Pfizer BioNTech-Comirnaty	1	93% aVE	95% aVE	89-90% aVE
2-dose Sinovac-CoronaVac+3 rd AstraZeneca-Vaxzevria	1	90% aVE	93% aVE	96-98% aVE
3 doses of Sinovac-CoronaVac	1	68% aVE	71% aVE	75-79% aVE
3 doses of Moderna-mRNA-1273	1	47% rVE		50% rVE

- Limited data
- Additional dose increases efficacy/effectiveness
 - No difference by age
 - Absolute gain dependent on vaccine and starting point
- Need to consider biases: first to get boosted might be different—more health seekers, lower risk of exposure or maybe higher risk of exposure
- Duration of boost—unknown as most studies short term (<2 months)

rVE=relative vaccine effectiveness; aVE=absolute vaccine effectiveness

Safety of booster vaccination

Sonali Kochhar

SAGE meeting 7 December 2021

Heterologous Booster Doses: Preliminary Safety/Reactogenicity Data

Study	Priming vaccine	Booster vaccine	N	Interval pre-boost
Moghnieh et al; Vaccine	2 x Sinopharm (SP)	Pfizer (BNT)	50	<3m
	2 x Sinovac (SV)	Astrazeneca (AZ)	65	8-12w
Angkasekwinai et al;	2 x SV	BNT	100	8-12w
medRxiv	2 x AZ	SP	23	8-12w
	2 x AZ	RNA	100	8-12w
Patamatamkul et al;	2 x SV	AZ	18	~4m
medRxiv	2 x SV	BNT	23	~4m
Pun Mok et al; medRxiv	2 x SV	BNT	40	>1m
Munro et al, Lancet	2 x AZ 2 x BNT	BNT (full, half dose), JNJ, Moderna (MOD), AZ	2878	>2-3m
Atus a usus a al Distin	1 x JNJ	MOD/BNT	106	≥3m
Atmar; medRxiv	2 x MOD 2 x BNT	JNJ	201	≥3m
Sablerolles; medRxiv	1 x JNJ	MOD/BNT	223	3m

- No safety concerns identified across the studies
- Reactogenicity profiles similar to primary series of vaccines
- Modest sample size for most studies

Homologous Booster Doses: Preliminary Safety/Reactogenicity Data

RCT extensions

Study	Priming vaccine	Booster vaccine	N	Interval pre- boost
Pfizer unpublished data	2 x BNT	BNT	>10,000	>6m
Choi et al; Nat Med	2 x MOD	MOD/ MOD (VOC)	79	6-7m
Sadoff et al; medRxiv	1 x JNJ	JNJ (5 x 10 ¹⁰ ,1.2 x 10 ¹⁰)	98	6m
Flaxman et al; Lancet	2 x AZ	AZ	80	5-10m
Pan et al; medRxiv	2 x SV	SV (3/6 μg)	540	1/6m
Li et al; medRxiv	2 x SV	SV (1.5,3,6 μg)	256	≥8m
Gilboa et al, J Infect Dis	2 x BNT	BNT	208	>5m

- No major safety concerns identified across the studies
- Reactogenicity profiles consistent with primary series of vaccine in question

DMID 21-0012 - Heterologous Platform Boost Study (Mix and Match)

Group	Sample Size	EUL Vaccine	Interval (weeks)	Booster vaccination
1	53	JNJ	≥12 (mean 13.7)	MOD (100 mcg)
2	51	2 x MOD	≥12 (mean 16.4)	
3	50	2 x BNT	≥12 (mean 16.8)	
4	50	JNJ	≥12 (mean 17.7)	JNJ
5	49	2 x MOD	≥12 (mean 19.3)	(5x10 ¹⁰ vp)
6	51	2x BNT	≥12 (mean 20.6)	
7	53	JNJ	≥12 (mean 19.9)	BNT
8	51	2 x MOD	≥12 (mean 22.9)	(30 mcg)
9	50	2 x BNT	≥12 (mean 24.1)	

- Safety and reactogenicity seen on study days 15 and 29
- Groups matched for age, sex, race, ethnicity
- Reactogenicity similar to that reported for the primary series. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants
- Most related AEs were Grade 1 or 2 severity
- No safety concerns identified

Conclusion

- Vaccine effectiveness reported following heterologous booster doses e.g Chile (SV-SV-AZ, n = 1.7M; SV-SV-BNT, $n = ^21$ M) but without safety data
- Homologous and heterologous booster well-tolerated
- Reactogenicity profiles similar to the primary series
- Most AEs mild to moderate and transient