











# Streptococcus pyogenes vaccine development

# And report from 2024 WHO meeting

Andrew Steer Andrea Beaton











# Outline

Disease and disease burden
Vaccine landscape
Enabler landscape
Key issues for the field
SAVAC meeting London 2024: vaccine endpoints
What's next











# Disease and disease burden



### -Strep A

- -Streptococcus pyogenes
- -Group A Streptococcus (GAS)
- -Group A beta-hemolytic Streptococcus (GABHS)







### Strep A: a complex pathogen



























### Strep A disease over the lifespan



Tsoi 2015













## Rheumatic heart disease

Infectious disease

Immune-mediated disease

Chronic non-communicable disease





### **HPV** infection

Asymptomatic\*

### CIN 2/3

HPV DNA, VIN

### Cervical cancer



**HPV** infection

Asymptomatic\*

CIN 2/3

HPV DNA, VIN

Cervical cancer



Advanced RHD

Strep A infection

Symptomatic\*

ARF, latent RHD

## The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 24, 2017

VOL. 377 NO. 8

Global, Regional, and National Burden of Rheumatic Heart Disease, 1990–2015











# Vaccine landscape



### M-typing (~260 M-types)



Steer JPCH 2007

www.nature.com/npjvaccines

REVIEW ARTICLE OPEN

February 2023 S

The Streptococcus pyogenes vaccine landscape

Donald R. Walkinshaw (1) Meghan E. E. Wright<sup>1</sup>, Anne E. Mullin<sup>1</sup>, Jean-Louis Excler (1), Jerome H. Kim (1)<sup>2,3,4</sup> and Andrew C. Steer<sup>3,5,6</sup>





















### Current Strep A Vaccine Pipeline<sup>1</sup>

|                     | Active F                                   | Programs and Leading Developer | Discovery | Preclinical | Phase 1       | Phase 2                                 | Phase 3   |
|---------------------|--------------------------------------------|--------------------------------|-----------|-------------|---------------|-----------------------------------------|-----------|
| M Protein Based     | THE UNIVERSITY OF TENNESSEE KNOXVILLE      | StreptAnova (30-valent)        |           | Phase 1a c  | ompleted 2020 |                                         |           |
|                     | Griffith                                   | J8/S2 Combivax                 |           | Phase 1a o  | ngoing        |                                         |           |
|                     | Griffith                                   | P*17/S2 Combivax               |           | Phase 1a o  | ngoing        |                                         |           |
|                     | Universidade<br>de São Paulo               | StreptInCor                    |           |             |               |                                         |           |
| Non-M Protein Based | GSK                                        | Combo4                         | •••••     |             | •••••••       | ••••••••••••••••••••••••••••••••••••••• | ••••••••• |
|                     | Vaxcyte                                    | VAX-A1                         |           |             |               |                                         |           |
|                     | THE UNIVERSITY OF QUEENSLAND               | Combo5                         |           |             |               |                                         |           |
|                     | VaxFormus                                  | SpeAB                          |           |             |               |                                         |           |
|                     | UNIVERSITY OF AUCKLAND Waipapa Taumata Rau | TeeVax                         |           |             |               |                                         |           |
|                     | moderna                                    | mRNA Vaccine                   |           |             |               |                                         |           |
|                     | RHAPSEDA<br>University of Dundee           | Glycoconjugate Vaccine         |           |             |               |                                         |           |
|                     | Imperial College<br>London                 | Others (e.g. Spy7)             |           |             |               |                                         |           |

 Strep A vaccine pipeline as of December 20, 2023
 Walkinshaw et al., The Streptococcus pyogenes vaccine landscape, npj Vaccines, 2023 Castro and Dorfmueller, Update on the development of Group A Streptococcus vaccines, npj Vaccines, 2023

The Australian Strep A Vaccine Initiative (ASAVI)











# Development enablers



### **Enablers: 1**























### The Path to SAVAC: Strep A Vaccine Global Consortium

### The First Step: PDVAC meetings from 2015 onwards





Status of research and development of vaccines for Streptococcus pyogenes

Andrew C. Steer<sup>a,b,\*</sup>, Jonathan R. Carapetis<sup>c</sup>, James B. Dale<sup>d</sup>, John D. Fraser<sup>e</sup>, Michael F. Good<sup>f</sup>, Luiza Guilherme<sup>g</sup>, Nicole J. Moreland<sup>h</sup>, E. Kim Mulholland<sup>i,j</sup>, Florian Schodel<sup>k</sup>, Pierre R. Smeesters<sup>a,b,1</sup>

### The Path to SAVAC: Strep A Vaccine Global Consortium

### The Next Steps...





WHO/IVI Global Stakeholder Consultation on Group A Streptococcal Vaccine Development 12-13th December, 2016, Sheraton Seoul Palace Gangnam Hotel, Seoul, Korea Supported by: Shinil Corporation, CANVAS, RHD Action, MCRI



Conference report

WHO/IVI global stakeholder consultation on group A *Streptococcus* vaccine development: Report from a meeting held on 12–13 December 2016

Joshua Osowicki <sup>a,\*</sup>, Johan Vekemans <sup>b</sup>, David C. Kaslow <sup>c</sup>, Martin H. Friede <sup>b</sup>, Jerome H. Kim <sup>d</sup>, Andrew C. Steer <sup>a</sup>

- Develop Preferred Product Characteristics
- Develop a Roadmap for Vaccine Development
- Develop a value proposition for GAS vaccines
- Formation of a Global Strep A Vaccine Consortium

### The Path to SAVAC: Strep A Vaccine Global Consortium

### The Next Steps...





### Strep A Vaccine Global Consortium <a href="https://savac.ivi.int">https://savac.ivi.int</a>



#### **Funded by the Wellcome Trust 2019**

The mission of SAVAC is to ensure that safe, effective and affordable Strep A vaccines are available and implemented to decrease the burden of Strep A disease in the most in need.

WHO

**FVVA** 

Burden of disease

**Immune correlates** 

Vaccine safety

Global engagement









# SAVAC 2.0

Officially launched November 2023











### **Funders**

# SAVAC 2.0





SAVAC is the key global technical advisory group for vaccine development for *S. pyogenes*.





### Paving a path for development of a Strep A vaccine through three cross-disciplinary workstreams



#### **Enablers: 2 and 3**













### Key issues for the field



Strep A Vaccine Global Consortium <a href="https://savac.ivi.int/">https://savac.ivi.int/</a>





**Endpoints for clinical trials** 

Vaccine design:

peptide,
protein, mRNA,
glycoconjugate,
others

Immune Correlates of protection

Optimal antigen selection



Vaccine dosing timing/ schedule

Strain coverage (next slide)

Role of human challenge model (human only pathogen

**Vaccine safety** 

Role of echocardiography

Pharyngitis

Scarlet fever

Impetigo

Invasive disease

Toxic shock syndrome

Acute glomerulonephritis

Acute rheumatic fever

Rheumatic heart disease

Cross-reactive immunity testing

Mucosal vs parenteral delivery

Symptomatic vs asymptomatic pharyngitis

Vaccine design:

peptide,
protein, mRNA,
glycoconjugate,
others

Optimal antigen selection



Vaccine dosing timing/ schedule

Strain coverage (next slide)



ocardiography

**Cross-reactive immunity testing** 

Mucosal vs parenteral delivery

**Endpoints for clinical trials** 

Symptomatic vs asymptomatic pharyngitis









### SAVAC meeting London 2024:

# Endpoints to advance vaccine clinical development



Strep A Vaccine Global Consortium <a href="https://savac.ivi.int/">https://savac.ivi.int/</a>









# Joint Meeting of SAVAC and WHO Streptococcus pyogenes vaccines: an expert review of evidence needs to guide policy





September 30, 2024 Wellcome Trust, London

Strep A Vaccine Global Consortium <a href="https://savac.ivi.int/">https://savac.ivi.int/</a>









#### Joint Meeting of SAVAC and WHO Streptococcus pyogenes vaccines: an expert review of evidence needs to guide policy



### A Global Objective The Joint SAVAC and WHO Meeting



What pivotal study evidence is needed for a vaccine with a recommendation to prevent <a href="rheumatic heart disease">rheumatic heart disease</a> through an indication for prevention of \_\_\_\_\_ among individuals \_\_\_\_ to \_\_\_ years of age?

### Key Questions that were asked and answered at the meeting

A Strep A Vaccine for LIMCs

**Question 1** 

Is the evidence of <u>prevention of S. pyogenes</u> <u>pharyngitis</u> by a vaccine sufficient for a <u>recommendation to prevent advanced RHD</u>?



### Key Questions that were asked and answered at the meeting

A Strep A Vaccine for LIMCs

**Question 1** 

Is the evidence of <u>prevention of S. pyogenes</u> <u>pharyngitis</u> by a vaccine sufficient for a <u>recommendation to prevent advanced RHD</u>?



**Question 2** 

Would prevention of an <u>earlier</u> (than advanced RHD) recognized disease stage (ARF or Early RHD) be sufficient for a recommendation to prevent advanced RHD?



### Key Questions that were asked and answered at the meeting

A Strep A Vaccine for LIMCs



Is the evidence of <u>prevention of S. pyogenes</u> <u>pharyngitis</u> by a vaccine sufficient for a <u>recommendation to prevent advanced RHD</u>?



**Question 2** 

Would prevention of an <u>earlier</u> (than advanced RHD) recognized disease stage (ARF or Early RHD) be sufficient for a recommendation to prevent advanced RHD?



**Question 3** 

What is the **best strategy** for a pivotal study to reach a vaccine recommendation to prevent advanced RHD?







# A CONSIDERATION OF INTERMEDIATE ENDPOINTS IN THE CONTEXT OF STREP A VACCINE TRIALS

# Globally, we need to prevent Advanced-Stage RHD

### A Strep A Vaccine for LIMCs



### Early in the disease Outcomes are heterogeneous

### **Strep A Infection(s)** Rheumatic Fever **Early RHD** >99% 30% 50% **Healthy**

### A Strep A Vaccine for LIMCs

Many children will end up healthy, even without intervention

## Advanced-stage RHD Is rapidly progressive with high mortality



**Point of Irreversibility** 

#### **Advanced-stage RHD**

### A Strep A Vaccine for LIMCs



Time to advanced-stage RHD makes it an impractical for Strep A vaccine trials

# INTERMEDIATE MARKERS BEFORE ADVANCED RHD DEVELOPS

# Acute Rheumatic Fever The first intermediate endpoint

Actue rheumatic fever is the immune over-reaction to Strep A



#### **ARF** is Hard to Find

### A Strep A Vaccine for LIMCs



Superficial Strep Infections



Acute Rheumatic Fever



Rheumatic Heart Disease

While many present with superficial Strep A infections and many present with RHD, diagnosis with ARF is uncommon

#### Prospective Epidemiological Surveillance only Captures a Fraction

### A Strep A Vaccine for LIMCs



Uganda data +
Fijian data
suggest for every
case found; 1-2
are missed

Prospective epidemiological surveys only capture a fraction of RF, could potentially do better in a closed cohort design.

#### Why is ARF Under-diagnosed?



### A Strep A Vaccine for LIMCs

Very likely a combination of factors...

But, lack of a diagnostic test is a HUGE challenge

A Strep A Vaccine for LIMCs



Clinical Decision Tool + Diagnosis of Exclusion

### A Strep A Vaccine for LIMCs



Most Components are Non-specific (orange)

# A Strep A Vaccine for LIMCs



A few are highly specific but rare (Major criteria: Subcutaneous nodules + Erythema marginatum <2%)

### A Strep A Vaccine for LIMCs



And many critical criteria cannot be routinely assessed in LIMCs

(including need to rule out overlapping conditions)

## As a result The ability to diagnose ARF in LIMCs is limited



#### **Community Health Center**

#### Model 1

Sensitivity= 66%

Specificity= 68%

#### **District hospital**

#### Model 2

Sensitivity=77%

Specificity=67%

#### **National referral hospital**

#### Model 3

Sensitivity= 84%

Specificity= 87%

### Even when all resources availible Diagnosis of ARF is still hard

### A Strep A Vaccine for LIMCs



Even with adequate resources ARF diagnosis is hard.

25%

# Other considerations for an efficacy trial look like with <u>ARF prevention</u> as your primary endpoint?

Randomized



## Large sample sizes will be required in most RHD endemic settings

If you target 50% reduction in RF incidence (HR=0.5)

| Country              | RF incidence     |         | 1 Year | 2 Years | 3 Years | 4 Years | 5 Years |
|----------------------|------------------|---------|--------|---------|---------|---------|---------|
| Indigenous Australia | 245 per 100,000  | 0.00245 | 35918  | 17959   | 11973   | 8980    | 7184    |
| NZ Pacific           | 81 per 100,000   | 0.00081 | 108642 | 54321   | 36214   | 27160   | 21728   |
| NZ Maori             | 25 per 100,000   | 0.00025 | 352000 | 176000  | 117333  | 88000   | 70400   |
| Uganda (Lira)        | 25 per 100,000   | 0.00025 | 352000 | 176000  | 117333  | 88000   | 70400   |
| Fiji                 | 15.2 per 100,000 | 0.00015 | 578947 | 289474  | 192982  | 144737  | 115789  |
| Uganda (Mbarara)     | 13 per 100,000   | 0.00013 | 676923 | 338462  | 225641  | 169231  | 135385  |

You need 66 events Sample size for a 2-year trial 17,959-338,462

## Large sample sizes will be required in most RHD endemic settings

If you target 80% reduction in RF incidence (HR=0.2)

| Country              | RF incidence     |         | 1 Year | 2 Years | 3 Years | 4 Years | 5 Years |
|----------------------|------------------|---------|--------|---------|---------|---------|---------|
| Indigenous Australia | 245 per 100,000  | 0.00245 | 6531   | 3265    | 2177    | 1633    | 1306    |
| NZ Pacific           | 81 per 100,000   | 0.00081 | 19753  | 9877    | 6584    | 4938    | 3951    |
| NZ Maori             | 25 per 100,000   | 0.00025 | 64000  | 32000   | 21333   | 16000   | 12800   |
| Uganda (Lira)        | 25 per 100,000   | 0.00025 | 64000  | 32000   | 21333   | 16000   | 12800   |
| Fiji                 | 15.2 per 100,000 | 0.00015 | 64000  | 32000   | 21333   | 16000   | 12800   |
| Uganda (Mbarara)     | 13 per 100,000   | 0.00013 | 123077 | 61538   | 41026   | 30769   | 24615   |

You need 12 events
Sample size for a 2-year trial 3,265-61,538

#### **Key Conclusions**

### A Strep A Vaccine for LIMCs

#### **Rheumatic Fever**



ARF diagnosis is a huge challenge in LMICs leading to ARF not being a practical intermediate Strep A vaccine endpoint in these settings



2

The first intermediate endpoint

A Strep A vaccine with ARF as the intermediate endpoint *MIGHT* be possible in Australia and New Zealand – but formative work is needed to understand regulatory, cost, and logistical feasibility

### Early Rheumatic Heart Disease A practical intermediate endpoint

Early RHD is slient on clinical exam, but able to be found by echocardiography



## Early RHD has become recognized as a Intermediate endpoint

## A Strep A Vaccine for LIMCs



Early RHD is specific to RHD-endemic environments

## Early RHD has become recognized as a Intermediate endpoint



## A Strep A Vaccine for LIMCs

Engelman (2017)

Children with early RHD show progression to advanced-stage RHD

## Early RHD has become recognized as a Intermediate endpoint







## Prophylaxis protects children with early RHD from progression

### Early RHD is easy to find

## A Strep A Vaccine for LIMCs



Superficial Strep Infections



Acute Rheumatic Fever



Rheumatic Heart Disease

### Echo screening is Is the most sensitive approach to diagnosis



- Screening with auscultation is no longer recommended
- Echo screening on 6
   continents, finding
   1-2% in most high risk populations
- 1/3 advanced + 2/3 early-stage RHD

## Echo screening for early-RHD ls practical, feasible, and efficient in LMICs

## A Strep A Vaccine for LIMCs





Two-step screening protocols
Screen --> Diagnose
95% sensitive + specific





School + community settings with high uptake 99% consent to screening





New trainees - rapid training 4 weeks 96% for image aquisition





Cloud-based echo reading Image transfer from lowbandwidths, 100%

- In Uganda, across 2 clinical trials, >300,000 children screened
- Now at a rate of >2500/day with a team of 5 nurses
- Cost of screening is \$1-2 per child in this setting

## Standardized evidence-based Guidelines exist

### A Strep A Vaccine for LIMCs

- Revised in 2023 to improve reproducibility
- Provided disease stages (A-D)
- Screening
   recommended in
   the 2024 WHO
   Guidelines in high risk settings

nature reviews cardiology

https://doi.org/10.1038/s41569-023-00940-9

**Evidence-based guidelines** 



# 2023 World Heart Federation guidelines for the echocardiographic diagnosis of rheumatic heart disease

Joselyn Rwebembera  $^{1,38} \boxtimes$ , James Marangou  $^{2,3,4,38}$ , Julius Chacha Mwita $^5$ , Ana Olga Mocumbi  $^6$ , Cleonice Mota $^{7,8}$ , Emmy Okello $^1$ , Bruno Nascimento $^{9,10}$ , Lene Thorup $^{11}$ , Andrea Beaton $^{12,13}$ , Joseph Kado $^{14,15}$ , Alexander Kaethner $^{2,16}$ , Raman Krishna Kumar $^{17}$ , John Lawrenson $^{18,19}$ , Eloi Marijon  $^{20}$ , Mariana Mirabel $^{21}$ , Maria Carmo Pereira Nunes $^{9,10}$ , Daniel Piñeiro $^{22}$ , Fausto Pinto  $^{23}$ , Kate Ralston $^{24}$ , Craig Sable $^{25}$ , Amy Sanyahumbi $^{26}$ , Anita Saxena $^{27}$ , Karen Sliwa $^{28}$ , Andrew Steer $^{29,30,31}$ , Satupaitea Viali $^{32}$ , Gavin Wheaton $^{33}$ , Nigel Wilson $^{34}$ , Liesl Zühlke $^{35,36}$  & Bo Reményi  $^{2,16,37}$ 

## Screening for Early-Stage RHD Now recommended in RHD-endemic areas

WHO guideline on the prevention and diagnosis of rheumatic fever and rheumatic heart disease

- Published in 2024
- For the first time provide a formal recommendation for screening echocardiography to diagnose early-stage RHD

## Other considerations for an efficacy trial look like with RHD prevention as your primary endpoint?



### Sample sizes are lower and achievable

| If you target 50% reduction in RHD incidence (HR=0.2)      |                     |        |         |         |         |         |  |  |  |
|------------------------------------------------------------|---------------------|--------|---------|---------|---------|---------|--|--|--|
| Assumed RHD prevalence at end of 5 years (no intervention) | Annual<br>Incidence | 1 Year | 2 Years | 3 Years | 4 Years | 5 Years |  |  |  |
| 0.50%                                                      | 0.0010              | 88000  | 44000   | 29333   | 22000   | 17600   |  |  |  |
| 1.00%                                                      | 0.0020              | 44000  | 22000   | 14667   | 11000   | 8800    |  |  |  |
| 1.50%                                                      | 0.0030              | 29333  | 14667   | 9778    | 7333    | 5867    |  |  |  |
| 2.00%                                                      | 0.0040              | 22000  | 11000   | 7333    | 5500    | 4400    |  |  |  |

### In Uganda - Sample size decreases from 338,462 to 14,667

| If you target 80% reduction in RHD incidence (HR=0.2)      |                     |        |         |         |         |         |  |  |  |
|------------------------------------------------------------|---------------------|--------|---------|---------|---------|---------|--|--|--|
| Assumed RHD prevalence at end of 5 years (no intervention) | Annual<br>Incidence | 1 Year | 2 Years | 3 Years | 4 Years | 5 Years |  |  |  |
| 0.50%                                                      | 0.0010              | 16000  | 8000    | 5333    | 4000    | 3200    |  |  |  |
| 1.00%                                                      | 0.0020              | 8000   | 4000    | 2667    | 2000    | 1600    |  |  |  |
| 1.50%                                                      | 0.0030              | 5333   | 2667    | 1778    | 1333    | 1067    |  |  |  |
| 2.00%                                                      | 0.0040              | 4000   | 2000    | 1333    | 1000    | 800     |  |  |  |

#### In Uganda - Sample size decreases from 61,538 to 2667

### **Key Conclusions**

Early-Stage Rheumatic Heart Disease





- Early RHD is simple to diagnose, highly sensitive and replicable test
- Established pathways to local capacity building in LIMCs
- Low cost per child screened

## A pragmatic and recognized clinical intermediate





### THANK YOU









### What's next



Strep A Vaccine Global Consortium <a href="https://savac.ivi.int/">https://savac.ivi.int/</a>



### Paving a path for development of a Strep A vaccine through three cross-disciplinary workstreams

Preparing for vaccine trials

Preparing Industry

Preparing non-industry stakeholders

1. Clinical endpoints

2. Revised Roadmap & PPC

### 1. Early RHD as a recognized clinical intermediate

-London meeting report in draft

-Other technical papers in draft

-Position statement being developed by cardiology experts

-Role of PDVAC in endorsement and convening around this topic

### 2. Roadmap and PPC

-Roadmap will be revised in 2025

-PPC will be revised in 2025 - question to PDVAC on how to deal with two use cases:

- HIC: pharyngitis
- LMIC: rheumatic heart disease

### **Final comment**

PDVAC has been critical in advancing efforts for Strep A vaccine development

We request PDVACs ongoing involvement and support













### Thank you



### **GAS** section - Questions to PDVAC

- 1 Does PDVAC have specific recommendations on pursuing a parallel pathway to policy for a GAS vaccine to be indicated against:
- pharyngitis in low-RHD burden settings (e.g. HIC)
- RHD in RHD-endemic settings (e.g. LMIC+HIC marginalized communities)
- 2 Does PDVAC have specific feedback on using **early RHD** as **intermediate clinical endpoint for RHD** in pivotal clinical studies to be conducted in RHD endemic settings?
- 3. Does PDVAC agree to update the existing PPC to include two use case scenarios (prevention of pharyngitis and RHD) once consensus has been reached on the intermediate clinical endpoint?