A HUMAN INFECTION CAUSED BY

Bull. Org. mond. Santé Bull. Wld Hlth Org. } 1972, 46, 593-597

A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo *

I. D. LADNYJ,¹ P. ZIEGLER,² & E. KIMA³

This paper presents clinical and epidemiological information on a patient with smallpox-like disease, from whom a monkeypox-like virus was isolated. The patient was the first recognized human monkeypox case in medical history.

On 1 September 1970

23 July 2022

Journey to Public
Health Emergency of
International Concern
(PHEIC)

Occurrence of monkeypox virus in widely scattered areas of Africa during 1970 -1979

"The patient (A. I.) was a 9-month-old boy who became ill with fever on 22 August 1970 and 2 days later developed a rash. He was admitted to Basankusu Hospital on 1 September".

Gabon: 4

DRC: 343

Number of confirmed, probable, and/or possible monkeypox cases between 1970–1979

Number of confirmed, probable, and/or possible monkeypox cases between 1980–1989.

Bunge et al., 2022

possible monkeypox cases between 1990-

Number of confirmed, probable, and/or possible monkeypox cases between 1990-1999.

Number of confirmed, probable, and/or possible monkeypox cases between 2000-2009.

possible monkeypox cases between

Transmission Potential of Monkeypox Virus in Africa

Transmission Potential of Monkeypox Virus²⁷in²⁰²² Human Populations (1980-1984) in DRC

Two pertinent questions were addressed in 1988

- 1) What is the epidemic potential of monkeypox in unvaccinated human population?
- 2) Is it possible that monkeypox could persist in unvaccinated human populations through continuous-person-to-person transmission?

Fine et al. 1988, The transmission potential of monkeypox virus in human populations. Intonational Journal of Epidemiology

Cessation of routine smallpox vaccination: 2022 emergence of monkeypox disease

In 1980:

- Surveillance system was based primary upon health-institutions in the epidemic regions
- Importance of collaboration of hospital and dispensary staff for accurate and complete reporting of cases (detection of cases)
- Examination of monkeypox cases and collection/dispatch of specimens for laboratory testing and thus for confirmation of the clinical diagnosis
 - Specimens (lesion material, sera)
- WHO Collaborating Centres: at the Centres for Disease Control, Atlanta,
 Fine et al. 1988

 Fine et al. 1988

Collaboration and motivation are key elements often overlooked to strengthen surveillance

- Technical assistance (material, and epidemiological investigations) provided by mobile surveillance teams
- Affected localities as well as village-based surveillance
- A reward of 500 Zaïres (90 US\$) was offered to any person, including health staff, who reported a case of human monkeypox

World Health World Health EMERGENCIES Programme

Transmission Potential of Monkeypox Virus in Africa

Transmission scenario was like and is like now

 Secondary attack rate (risk)

- (Basic) reproduction number (number)
- Explore relationship between secondary attack rate and basic reproduction number
- Application: monkeypox (ongoing global outbreak/regional/country etc.)

Transmission scenario: need for detailed and good quality epidemiological data

2º Attack rate *** = -----

Individuals in contact

* Denominator with 1° case *

Standardise contact – eg in household Should be susceptible (thus "at risk")

** Numerator

2° cases defined by serial interval Homologous stages of 1° and 2° Exclude co-1° and 3° Ideally should measure infections

Distribution of rash-to-rash intervals (in days), since onset of primary case, as observed in 41 multiple-case monkeypox outbreaks in DRC 1980-1984.

RASH TO RASH INTERVAL(IN DAYS)SINCE ONSET OF PRIMARY CASE IN OUTBREAK

Fine et al. 1988, The transmission potential of monkeypox virus in human populations. Intonational Journal of Epidemiology

Relative frequency distribution of the number of contact per monkeypox case in DRC 1980-1984

per case	Number of cases	Relative frequency	
0-4	28	0.13	
5 9	81	0.39	
10-14	41	0.20	
15-19	25	0.12	
20-24	14	0.07	
25-29	13	0.06	
30-34	0	0.00	
35-3 9	4	0.02	
40-44	3	0.01	
TOTAL	209	1.00	

 Looking for individual who may have been in contact with more than a single case!

of 147 primary and coprimary monkeypox

CACAC

•	Same residence as primary or coprimary case			Other residence than primary or coprimary case			All contacts of primary or coprimary case		
	er of Cases	Attack rate	Numb Contacts	er of Cases	Attack rate	Numb Contacts	er of Cases	Attack rate	
Unvaccinated	236	26	0.110	238	9	0.038	474	35	0.074
Vaccinated	5 9 8	10	0.017	501	2	0.004	1099	12	0.011
TOTAL	834	36	0.043	739	11	0.015	1573	47	0.030

Implications of Attack Rates for Virus Persistence in DRC (1988)

Assuming that cases on average contact 10.7 individuals

- 53% (ie 834/1573) of contacts would be domiciliary and at high risk (0.110)
- 47% would be extra-domiciliary and at lower risk (0.038)
- Therefore, each case should lead to:

 $10.7 \times (834/1573) \times 0.110 + 10.7 \times (739/1573) \times 0.038 = 0.815$ subsequent cases

"On average, each case would lead to less than one subsequent case, and thus that the virus could not persist in human populations"

Basic case reproduction rate: calculated with confidence interval (upper limit estimated to 1.0: possibility of persistence in human populations)

Expected secondary attack rates in urban 2022 areas

- Great concern that the virus might be introduced into crowded urban cities in Western and Central Africa
 - Rapid spread of the infection
- Need to intensified the surveillance and detection

Increase in human monkeypox incidence 27 July 2022 30 years after smallpox vaccination campaigns ceased in DRC

- Monkeypox is a viral zoonotic disease
- Endemic in 9+ African countr
- Orthopoxvirus genus
- Animal Reservoir unknown
- Two clades
- Cameroon has both

Rimoin et al , 2010

Monkeypox virus transmission cycle in

27 July 2022

Fuller et al. 2011

Transmission scenario

- Mixing often not homogenous
- Heterogeneous mixing
- Chance effects (stochasticity) may be

S E R

Socio-economic factors!

transmissibility in wildlife and human

Key attributes:

- Accuracy/complet eness
- Sensitivity
- Specificity
- Timeliness
- Cost

Simplicity

Human population
Animal population
Environment

AFRIPOX: A One Health approach of monkeypox

Anthro pology

Zoology

Ecology

Epidemi ology

Virology

Central African Republic (CAR)

Zoologie

- -Identification réservoir animal et hôtes intermédiaires
- Facteurs favorisant la prolifération du réservoir et l'augmentation des contacts réservoir/humains
 - -Développement d'un nouveau test sérologique plus spécifique
 - -Développement test diagnostic moléculaire de terrain
 - -Séquençage, phylogénie, phylogéographie
- -Description des formes cliniques
- -Facteurs de risque de transmission zoonotique interhumaine
- -Facteurs de risque environnementaux
- -Évaluation des tests diagnostics
- -Mesure de la réponse sérologique post infection
- -Potentiel épidémique et immunité des populations

- -Caractérisation des environnements favorables à la survenue d'épidémie
- Identification des <u>écotopes</u> favorables à la prolifération du réservoir animal Et/ou aux interactions humain/animal
- -Changement écologiques récents dans les zones touchées

Epidémiologie

Ecologie

- -Anthropologie de la santé et de la maladie
- -Approche Ethnohistorique
- Ethnoécologie-pratiques actuelles avec faune sauvage

Greater concern that the virus might be circulating (undetected)

- Multisectorial coordination mechanism
- Surveillance and diagnostic
- Vaccination (pre-exposure and prophylactic)
- Treatment (clinical and psychological support)
- Infections prevention and control (IPC)
- Risk communication & communication engagement (active)
- Research

THANK YOU MERCI OBRIGADO

