USING LARGE PUBLIC HEALTH DATABASES: VACCINE EFFECTIVENESS

Ron Brookmeyer

Fielding School of Public Health
University of California, Los Angeles

BACKGROUND

- •REAL WORLD VACCINE EFFECTIVENSS STUDIES
- •USE PUBLIC HEALTH DATABASES

 DATABASE (REGISTRY) OF VACCINATIONS

 DATABASE (REGISTRY) OF CASES (DISEASE)
- •LINK INDIVIDUALS IN DATABASES (e.g., names, date of birth, address)
- •COVID-19 EXAMPLES
 Scobie et al (2021)
 Rosenberg et al (2021)

OBJECTIVE EVALUATE SOME SOURCES OF ERROR

- •ERRORS IN REPORTING CASES
- ERRORS IN REPORTING VACCINCATIONS
- ERRORS IN LINKING INDIVIDUALS ACROSS DATABASES

R. Brookmeyer & DE Morrison, Estimating Vaccine Effectiveness By Linking Population-based Health Registries: Some Sources of Bias, *American Journal Of Epidemiology*, 2022.

VACCINE REGISTRY

CASE REGISTRY

VACCINE REGISTRY

CASE REGISTRY

VACCINE REGISTRY

CASE REGISTRY

	Case	Non-Case	
Vaccinated	N _{VC}		N_V
Unvaccinated			
	N _C		N

	Case	Non-Case	
Vaccinated	N _{VC}		N_V
Unvaccinated			
	N _C		N

Population size of registry catchment area

	Case	Non-Case	
Vaccinated	N _{VC}	$N_{V\overline{C}} = N_V - N_{VC}$	N_V
Unvaccinated	$N_{\overline{V}C} = N_C - N_{VC}$	$N_{\overline{VC}} = N - N_C - N_V + N_{VC}$	$N_{\overline{V}} = N - N_V$
	N _C	$N_{\overline{c}} = N - N_C$	N

	Case	Non-Case	
Vaccinated	N _{VC}	$N_{V\overline{C}} = N_{V} - N_{VC}$	N_V
Unvaccinated	$N_{\overline{V}C} = N_C - N_{VC}$	$N_{\overline{VC}} = N - N_C - N_V + N_{VC}$	$N_{\overline{V}} = N - N_V$
	$N_{\it C}$	$N_{\overline{c}} = N - N_C$	N

$$\widehat{R} = \frac{N_{VC} N_{\overline{V}}}{N_{V} N_{\overline{V}C}}$$

$$\widehat{VE} = (1 - \widehat{R}) \times 100\%$$

ERRORS EVALUATED

- UNDERREPORTING TO REGISTRIES
 NON-DIFFERENTIAL & INDEPENDENT:
 - -reporting of C does not depend on V
 - -reporting of V does not depend on C
- •ERRORS IN LINKING
 - -missed true matches
- •ERRORS IN POPULATION SIZE (N)

METHODS

- ANALYSIS
- SIMULATION

RESULT WITH ONE SOURCE OF ERROR

ERROR

DIRECTION OF BIAS in VE

UNDERREPORT VACCINATIONS
 VE BIASED TOWARD 0

UNDERREPORT CASES
 NO BIAS IN VE

LINKING ERROR:
 MISSED TRUE MATCHES

OVERESTIMATE VE

ERROR IN N
 UNDERESTIMATE N
 OVERESTIMATE N

OVERESTIMATE VE UNDERESTIMATE VE

MULTIPLE ERRORS: LINK ERROR & VACCINE UNDERREPORT

ADJUST VE TO CORRECT FOR ERRORS

- ADJUSTMENT FORMULA FOR VE
- STUDIES TO ESTIMATE MAGNITUDE OF ERRORS
- SENSITIVITY ANALYSES

SIMULATION RESULTS

True matches missed	Vaccine Under-report	Error in N	True VE	Unadjusted VE	Adjusted VE
10%	10%	0	0%	25%	0%
10%	10%	-10%	0%	48%	0%
10%	10%	-10%	80%	86%	80%
10%	10%	+10%	80%	72%	80%
10%	10%	-20%	80%	92%	80%

CONCLUDING REMARKS

SUMMARY: SOURCES OF ERROR

- -One error: Direction of bias is predictable.
- Multiple errors: direction is either way.

 Strong enough to make harmful vaccines appear effective
 - Adjust VE for biases
 - Enables comparisons with clinical trials, countries

OTHER ERRORS

- -"differential" registry underreporting
- missed true matches & false matches

THE WAY FORWARD

- -Improve public health databases
 - Improve completeness & accuracy of databases
 - -Improve data linking across databases
- -Studies to quantify errors to inform VE adjustment